Subscribe to RSS
DOI: 10.1055/s-0043-102949
Improving on Nature: The Role of Nanomedicine in the Development of Clinical Natural Drugs
Publication History
received 25 September 2016
revised 16 January 2017
accepted 20 January 2017
Publication Date:
08 February 2017 (online)
Abstract
Natural products have been used as a major source of drugs for millennia, and about half of the pharmaceuticals in use today are derived from natural products. However, their efficacy can be limited because of their low hydrophilicity and intrinsic dissolution rate(s), or physical/chemical instability. In addition, they can present scarce absorption, poor pharmacokinetics and bioavailability, scarce biodistribution, first-pass metabolism, trivial penetration and accumulation in the organs of the body, or low targeting efficacy. Novel nanoformulations based on drug delivery systems, namely nanoparticles, micelles, and vesicles, offer significant promise in overcoming these limitations. Nowadays, nanomedicine is crucial in developing appropriate therapeutic treatments of essential drugs, specifically antitumor and antiparasistic agents (i.e., Taxol, vincristine, camptothecin, doxorubicin, artemisinin) and other emerging molecules with pleiotropic functions (i.e., resveratrol, curcumin, salvianolic acid B, honokiol). Additionally, the number of nanoformulations developed with flavonoids, in particular rutin, quercetin, silymarin, and green tea catechins, is constantly increasing, and a significant number of publications have appeared in the last decade pertaining to nanoformulations based on extracts and essential oils. Most of these studies report very promising nanoformulations with sustained release and improved bioavailability at much lower doses than conventional preparations, and in many cases, also a better safety profile.
Key words
nanomedicine - nanoparticles - micelles and vesicles - artemisinin - curcumin - salvianolic acid B - silymarinSupporting Information
Data which represent parasitemia progression for mice groups infected with P. berghei and treated with ART loaded in lipososmes, in vitro cytotoxicity of free ART, ART-L, and ART-L-Tf on HCT-8 colon cancer cells, and the effects of dendrosomal curcumin, free curcumin, and empty dendrosome on the viability of U87MG cells, human bone marrow-derived stem cells, and HFSF-PI3 cells are available as Supporting Information.
-
References
- 1 Cameron A, Ewen M, Auton M, Abegunde D. WHO (World Health Organization): The world medicines situation 2011: Medicines prices, availability and affordability. Geneva, Switzerland. Available at. http://www.who.int/medicines/areas/policy/world_medicines_situation/WMS_ch6_wPricing_v6.pdf Accessed September 3, 2016
- 2 Beghyn T, Deprez-Poulain R, Willand N, Folleas B, Deprez B. Natural compounds: leads or ideas? Bioinspired molecules for drug discovery. Chem Biol Drug Des 2008; 72: 3-15
- 3 Lu JJ, Pan W, Hu YJ, Wang YT. Multi-target drugs: the trend of drug research and development. PLoS One 2012; 7: e40262
- 4 Morphy R. Selectively nonselective kinase inhibition: striking the right balance. J Med Chem 2009; 53: 1413-1437
- 5 Mehta P, Shah R, Lohidasan S, Mahadik KR. Pharmacokinetic profile of phytoconstituent (s) isolated from medicinal plants – A comprehensive review. J Tradit Complement Med 2015; 5: 207-227
- 6 Kesarwani K, Gupta R. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed 2013; 3: 253-266
- 7 Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23: 1417-1450
- 8 Committee for proprietary medicinal products (CPMP). Note for guidance on the investigation of bioavailability and bioequivalence. Available at. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/01/WC500070039.pdf Accessed September 3, 2016
- 9 Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005; 22: 11-23
- 10 Fleisher D, Bong R, Stewart BH. Improved oral drug delivery: solubility limitations overcome by the use of prodrugs. Adv Drug Deliv Rev 1996; 19: 115-130
- 11 Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev 2007; 59: 677-694
- 12 Merisko-Liversidge E, Liversidge GG, Cooper ER. Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 2003; 18: 113-120
- 13 Möschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2013; 453: 142-156
- 14 Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6: 319-327
- 15 Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treat Rev 2008; 34: 592-602
- 16 Bilia AR, Isacchi B, Righeschi C, Guccione C, Bergonzi MC. Flavonoids loaded in nanocarriers: an opportunity to increase oral bioavailability and bioefficacy. Food Nutr Sci 2014; 5: 1212-1227
- 17 Bilia AR, Guccione C, Isacchi B, Righeschi C, Firenzuoli F, Bergonzi MC. Essential oils loaded in nanosystems: a developing strategy for a successful therapeutic approach. Evid Based Complement Alternat Med 2014; 2014: 651593
- 18 Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 2008; 69: 1-9
- 19 Nicolas J, Mura S, Brambilla D, Mackiewicz N, Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem Soc Rev 2013; 42: 1147-1235
- 20 Gelperina S, Kisich K, Iseman MD, Heifets L. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 2005; 172: 1487-1490
- 21 Kumar M, Misra A, Babbar AK, Mishra AK, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 2008; 358: 285-291
- 22 Emerich DF, Thanos CG. The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 2006; 23: 171-184
- 23 Bawa R. Nanoparticle-based therapeutics in humans: a survey. Nanotechol Law Business 2008; 5: 135-155
- 24 Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther 2008; 83: 761-769
- 25 Mezei M, Gulasekharam V. Liposomes – a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci 1980; 26: 1473-1477
- 26 Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Crit Rev Ther Drug Carrier Syst 1996; 13: 257-388
- 27 Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv 2012; 9: 783-804
- 28 Ping M, Mumper RJ. Paclitaxel nano-delivery systems: a comprehensive review. J Nanomed Nanotechnol 2013; 18: 1000164
- 29 Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, Hawkins MJ. Abraxane, a novel cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol 2006; 17: 1263-1268
- 30 Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 2006; 7: 1041-1053
- 31 Untch M, Jackisch C, Schneeweiss A, Conrad B, Aktas B, Denkert C, Eidtmann H, Wiebringhaus H, Kümmel S, Hilfrich J, Warm M, Paepke S, Just M, Hanusch C, Hackmann J, Blohmer JU, Clemens M, Darb-Esfahani S, Schmitt WD, Dan Costa S, Gerber B, Engels K, Nekljudova V, Loibl S, von Minckwitz G. Nab-paclitaxel versus solvent-based paclitaxel in neoadjuvant chemotherapy for early breast cancer (GeparSepto-GBG 69): a randomised, phase 3 trial. Lancet Oncol 2016; 17: 345-356
- 32 Dranitsaris G, Yu B, Wang L, Sun W, Zhou Y, King J, Kaura S, Zhang A, Yuan P. Abraxane® versus Taxol® for patients with advanced breast cancer: A prospective time and motion analysis from a Chinese health care perspective. J Oncol Pharm Pract 2016; 22: 205-211
- 33 Ma P, Mumper RJ, Barenholz Y. Anthracycline nano-delivery systems to overcome multiple drug resistance: a comprehensive review. J Control Release 2012; 160: 117-134
- 34 Igor VZ, Norbert M, Quet-Fah A. Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release 2005; 104: 103-111
- 35 Yang SH, Lin CC, Lin ZZ, Tseng YL, Hong RL. A phase 1 pharmacokinetic study of liposomal vinorelbine in patients with advanced solid tumor. Invest New Drugs 2012; 30: 282-289
- 36 Wang Y, Dou L, He H, Zhang Y, Shen Q. Multifunctional nanoparticles as nanocarrier for vincristine sulphate delivery to overcome tumor multidrug resistance. Mol Pharm 2014; 11: 885-894
- 37 Patankar N, Waterhouse D. Nano-particulate drug delivery systems for camptothecins. Cancer Ther 2012; 8: 90-104
- 38 Cuong NV, Hsieh MF, Huang CM. Recent development in nano-sized dosage forms of plant alkaloid camptothecin-derived drugs. Recent Pat Anticancer Drug Discov 2009; 24: 254-261
- 39 Isacchi B, Arrigucci S, la Marca G, Bergonzi MC, Vannucchi MG, Novelli A, Bilia AR. Conventional and long-circulating liposomes of artemisinin: preparation, characterization, and pharmacokinetic profile in mice. J Liposome Res 2011; 21: 237-244
- 40 Isacchi B, Bergonzi MC, Grazioso M, Righeschi C, Pietretti A, Severini C, Bilia AR. Artemisinin and artemisinin plus curcumin liposomal formulations: enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur J Pharm Biopharm 2012; 80: 528-534
- 41 Righeschi C, Coronnello M, Mastrantoni A, Isacchi B, Bergonzi MC, Mini E, Bilia AR. Strategy to provide a useful solution to effective delivery of dihydroartemisinin: development, characterization and in vitro studies of liposomal formulations. Colloids Surf B Biointerfaces 2014; 116: 121-127
- 42 Leto I, Coronnello M, Righeschi C, Bergonzi MC, Mini E, Bilia AR. Enhanced efficacy of artemisinin loaded in transferrin-conjugated liposomes versus stealth liposomes against HCT-8 colon cancer cells. ChemMedChem 2016; 11: 1745-1751
- 43 Efferth T, Romero MR, Bilia AR, Osman AG, ElSohly M, Wink M, Bauer R, Khan I, Bergonzi MC, Marin JJG. Expanding the therapeutic spectrum of artemisinin: activity against infectious diseases beyond malaria and novel pharmaceutical developments. World J Tradit Chin Med 2016; 2: 1-23
- 44 Yallapu MM, Nagesh PK, Jaggi M, Chauhan SC. Therapeutic applications of curcumin nanoformulations. AAPS J 2015; 17: 1341-1356
- 45 Song Q, Wang X, Hu Q, Huang M, Yao L, Qi H, Qiu Y, Jiang X, Chen J, Chen H, Gao X. Cellular internalization pathway and transcellular transport of pegylated polyester nanoparticles in Caco-2 cells. Int J Pharm 2013; 445: 58-68
- 46 Kundu P, Mohanty C, Sahoo SK. Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater 2012; 8: 2670-2687
- 47 Kakkar V, Singh S, Singla D, Kaur IP. Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res 2011; 55: 495-503
- 48 Righeschi C, Bergonzi MC, Isacchi B, Bazzicalupi C, Gratteri P, Bilia AR. Enhanced curcumin permeability by SLN formulation: The PAMPA approach. LWT-Food Sci Technol 2016; 66: 475-483
- 49 Bergonzi MC, Hamdouch R, Mazzacuva F, Isacchi B, Bilia AR. Optimization, characterization and in vitro evaluation of curcumin microemulsions. LWT-Food Sci Technol 2014; 59: 148-155
- 50 Tahmasebi Mirgani M, Isacchi B, Sadeghizadeh M, Marra F, Bilia AR, Mowla SJ, Najafi F, Babaei E. Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells. Int J Nanomedicine 2014; 9: 403-417
- 51 Bhawana I, Basniwal RK, Buttar HS, Jain VK, Jain N. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J Agric Food Chem 2011; 59: 2056-2061
- 52 Rahman M, Beg S, Verma A, Al Abbasi FA, Anwar F, Saini S, Akhter S, Kumar V. Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: challenges and scope of nano/submicromedicine in its effective delivery. J Pharm Pharmacol 2017; 69: 1-14
- 53 Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 2005; 49: 472-481
- 54 Shao J, Li X, Lu X, Jiang C, Hu Y, Li Q, You Y, Fu Z. Enhanced growth inhibition effect of resveratrol incorporated into biodegradable nanoparticles against glioma cells is mediated by the induction of intracellular reactive oxygen species levels. Colloids Surf B Biointerfaces 2009; 72: 40-47
- 55 Sanna V, Siddiqui IA, Sechi M, Mukhtar H. Resveratrol loaded nanoparticles based on poly(epsiloncaprolactone) and poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) blend for prostate cancer treatment. Mol Pharm 2013; 10: 3871-3881
- 56 Wang XX, Li YB, Yao HJ, Ju RJ, Zhang Y, Li RJ, Yu Y, Zhang L, Lu WL. The use of mitochondrial targeting resveratrol liposomes modified with a dequalinium polyethylene glycol distearoylphosphatidyl ethanolamine conjugate to induce apoptosis in resistant lung cancer cells. Biomaterials 2011; 32: 5673-5687
- 57 Caddeo C, Teskac K, Sinico C, Kristl J. Effect of resveratrol incorporated in liposomes on proliferation and UVB protection of cells. Int J Pharm 2008; 363: 183-191
- 58 Figueiró F, Bernardi A, Frozza RL, Terroso T, Zanotto-Filho A, Jandrey EH, Moreira JC, Salbego CG, Edelweiss MI, Pohlmann AR, Guterres SS, Battastini AM. Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth. J Biomed Nanotechnol 2013; 9: 516-526
- 59 Coimbra M, Isacchi B, van Bloois L, Torano JS, Ket A, Wu X, Broere F, Metselaar JM, Rijcken CJ, Storm G, Bilia AR, Schiffelers RM. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm 2011; 416: 433-442
- 60 Bonaccini L, Karioti K, Bergonzi MC, Bilia AR. Effects of Salvia miltiorrhiza on CNS neuronal injury and degeneration: a plausible complementary role of tanshinones and depsides. Planta Med 2015; 81: 1003-1016
- 61 Isacchi B, Fabbri V, Galeotti N, Bergonzi MC, Karioti A, Ghelardini C, Vannucchi MG, Bilia AR. Salvianolic acid B and its liposomal formulations: anti-hyperalgesic activity in the treatment of neuropathic pain. Eur J Pharm Sci 2011; 44: 552-558
- 62 Wang X, Deng L, Cai L, Zhang X, Zheng H, Deng C, Duan X, Zhao X, Wei Y, Chen L. Preparation, characterization, pharmacokinetics, and bioactivity of honokiol-in-hydroxypropyl-β-cyclodextrin-in-liposome. J Pharm Sci 2011; 100: 3357-3364
- 63 Zhang Y, Chen T, Yuan P, Tian R, Hu W, Tang Y, Jia Y, Zhang L. Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells. Carbohydr Polym 2015; 133: 31-38
- 64 Fang F, Gong C, Qian Z, Zhang X, Gou M, You C, Zhou L, Liu J, Zhang Y, Guo G, Gu Y, Luo F, Chen L, Zhao X, Wei Y. Honokiol nanoparticles in thermosensitive hydrogel: therapeutic effects on malignant pleural effusion. ACS Nano 2009; 3: 4080-4088
- 65 Wang XH, Cai LL, Zhang XY, Deng LY, Zheng H, Deng CY, Wen JL, Zhao X, Wei YQ, Chen LJ. Improved solubility and pharmacokinetics of PEGylated liposomal honokiol and human plasma protein binding ability of honokiol. Int J Pharm 2011; 410: 169-174
- 66 Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: a review. Int J Nanomedicine 2014; 9: 1-15
- 67 Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed 2014; 4: S1-S7
- 68 Alexander A, Ajazuddin. Patel RJ, Saraf S, Saraf S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241: 110-124
- 69 Javed S, Kohli K, Ali M. Reassessing bioavailability of silymarin. Altern Med Rev 2011; 16: 239-249
- 70 Yang KY, Hwang du H, Yousaf AM, Kim DW, Shin YJ, Bae ON, Kim YI, Kim JO, Yong CS, Choi HG. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation. Int J Nanomedicine 2013; 8: 3333-3343
- 71 Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem Toxicol 2008; 46: 1771-1777
- 72 Valenti D, De Logu A, Loy G, Sinico C, Bonsignore L, Cottiglia F, Garau D, Fadda AM. Liposome-incorporated Santolina insularis essential oil: preparation, characterization and in vitro antiviral activity. J Liposome Res 2001; 11: 73-90
- 73 Sinico C, De Logu A, Lai F, Valenti D, Manconi M, Loy G, Bonsignore L, Fadda AM. Liposomal incorporation of Artemisia arborescens L. essential oil and antiviral activity. Eur J Pharm Biopharm 2005; 59: 161-168
- 74 Lai F, Sinico C, De Logu A, Zaru M, Müller RH, Fadda AM. SLN as a topical delivery system for Artemisia arborescens essential oil: in vitro antiviral activity and skin permeation study. Int J Nanomedicine 2007; 2: 419-425
- 75 Shi F, Zhao JH, Liu Y, Wang Z, Zhang YT, Feng NP. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int J Nanomedicine 2012; 7: 2033-2043