Rofo 2017; 189(07): 651-660
DOI: 10.1055/s-0043-102940
Contrast Agents
© Georg Thieme Verlag KG Stuttgart · New York

Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution

Transiente schwere Atemartefakte bei Dinatriumgadoxetat-gestützter MRT: Häufigkeit und Risikoevaluation an einer deutschen Klinik
Lennart Well
,
Vanessa Hanna Rausch
,
Gerhard Adam
,
Frank Oliver Henes
,
Peter Bannas
Further Information

Publication History

08 June 2016

11 January 2017

Publication Date:
26 April 2017 (online)

Abstract

Purpose Varying frequencies (5 – 18 %) of contrast-related transient severe motion (TSM) imaging artifacts during gadoxetate disodium-enhanced arterial phase liver MRI have been reported. Since previous reports originated from the United States and Japan, we aimed to determine the frequency of TSM at a German institution and to correlate it with potential risk factors and previously published results.

Materials and Methods Two age- and sex-matched groups were retrospectively selected (gadoxetate disodium n = 89; gadobenate dimeglumine n = 89) from dynamic contrast-enhanced MRI examinations in a single center. Respiratory motion-related artifacts in non-enhanced and dynamic phases were assessed independently by two readers blinded to contrast agents on a 4-point scale. Scores of ≥ 3 were considered as severe motion artifacts. Severe motion artifacts in arterial phases were considered as TSM if scores in all other phases were < 3. Potential risk factors for TSM were evaluated via logistic regression analysis.

Results For gadoxetate disodium, the mean score for respiratory motion artifacts was significantly higher in the arterial phase (2.2 ± 0.9) compared to all other phases (1.6 ± 0.7) (p < 0.05). The frequency of TSM was significantly higher with gadoxetate disodium (n = 19; 21.1 %) than with gadobenate dimeglumine (n = 1; 1.1 %) (p < 0.001). The frequency of TSM at our institution is similar to some, but not all previously published findings. Logistic regression analysis did not show any significant correlation between TSM and risk factors (all p > 0.05).

Conclusion We revealed a high frequency of TSM after injection of gadoxetate disodium at a German institution, substantiating the importance of a diagnosis-limiting phenomenon that so far has only been reported from the United States and Japan. In accordance with previous studies, we did not identify associated risk factors for TSM.

Key Points:

  • Gadoxetate disodium causes TSM in a relevant number of patients.

  • The frequency of TSM is similar between the USA, Japan and Germany.

  • To date, no validated risk factors for TSM could be identified.

Citation Format

  • Well L, Rausch VH, Adam G et al. Transient Severe Motion Artifact Related to Gadoxetate Disodium-Enhanced Liver MRI: Frequency and Risk Evaluation at a German Institution. Fortschr Röntgenstr 2017; 189: 651 – 660

Zusammenfassung

Ziel Das Auftreten kontrastmittelinduzierter, transienter schwerer Atemartefakte (TSA) nach Applikation von Dinatriumgadoxetat wurde mit einer variablen Inzidenz (5 – 18 %) beschrieben. Da bisherige Studien aus den USA und Japan stammen, war es unser Ziel die Inzidenz der TSA an einem deutschen Institut zu ermitteln, potentielle Risikofaktoren zu bestimmen und unsere mit bisherigen Studienergebnissen zu vergleichen.

Material und Methoden In unserer retrospektiven unizentrischen Studie wurden zwei alters- und geschlechtsabgestimmte Gruppen aus dem Kollektiv der in unserer Klinik angefertigten, kontrastmittelgestützten MRT-Untersuchungen bestimmt. (Dinatriumgadoxetat n = 89; Gadobenat Dimeglumin n = 89). Zwei gegenüber dem verwendeten Kontrastmittel geblindete Radiologen bewerteten unabhängig die atemabhängigen Bewegungsartefakte in nativen und dynamischen Kontrastmittelphasen auf einer 4-Punkte Skala. Werte von ≥ 3 wurden als schwere Artefakte angesehen. Wenn zudem Atemartefakte in allen anderen Untersuchungsphasen mit Werten < 3 bewertet wurden, erfolgte eine Einstufung der Artefakte als TSA. Eine Korrelation von potentiellen Risikofaktoren und TSA erfolgte mittels logistischer Regression.

Ergebnisse Nach Injektion von Dinatriumgadoxetat zeigten sich signifikant mehr atemabhängige Bewegungsartefakte in den arteriellen (2,2 ± 0,9) Kontrastmittelphasen als in allen anderen Phasen (1,6 ± 0,7) (p < 0,05). Die Häufigkeit der TSA nach Gabe von Dinatriumgadoxetat (n = 19; 21,1 %) war signifikant höher als nach Gabe von Gadobenat Dimeglumin (n = 1; 1,1 %) (p < 0,001). Die Häufigkeit der TSA in unserer Klinik ist vergleichbar mit der in einigen, aber nicht allen bisher veröffentlichten Studien. Es konnte keine signifikante Korrelation von TSA und den erhobenen potentiellen Risikofaktoren ermittelt werden (alle p > 0,05).

Schlußfolgerung Wir konnten ein hohes Auftreten von TSA an einer deutschen Institution demonstrieren und somit die Bedeutung eines Diagnose limitierenden Phänomens untermauern, welches bisher nur in den USA oder Japan beschrieben wurde. Ebenso wie bisherige Studien konnten wir keine Korrelation von TSA mit potentiellen Risikofaktoren identifizieren.

Kernaussagen:

  • Dinatriumgadoxetat führt bei bis zu einem Fünftel der Patienten zu TSA.

  • Die Häufigkeit der TSA in Deutschland, den USA und Japan ist vergleichbar.

  • Weder unsere noch vorherige Studien konnten übereinstimmende Risikofaktoren für TSA identifizieren.

 
  • References

  • 1 Hamm B. Staks T. Muhler A. et al. Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging. Radiology 1995; 195: 785-792
  • 2 Reimer P. Rummeny EJ. Shamsi K. et al. Phase II clinical evaluation of Gd-EOB-DTPA: dose, safety aspects, and pulse sequence. Radiology 1996; 199: 177-183
  • 3 Bluemke DA. Sahani D. Amendola M. et al. Efficacy and safety of MR imaging with liver-specific contrast agent: U.S. multicenter phase III study. Radiology 2005; 237: 89-98
  • 4 Dohr O. Hofmeister R. Treher M. et al. Preclinical safety evaluation of Gd-EOB-DTPA (Primovist). Invest Radiol 2007; 42: 830-841
  • 5 Kirchin MA. Pirovano G. Venetianer C. et al. Safety assessment of gadobenate dimeglumine (MultiHance): extended clinical experience from phase I studies to post-marketing surveillance. J Magn Reson Imaging 2001; 14: 281-294
  • 6 Park MJ. Kim YK. Lee MW. et al. Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns. Radiology 2012; 264: 761-770
  • 7 Sano K. Ichikawa T. Motosugi U. et al. Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology 2011; 261: 834-844
  • 8 Armbruster M. Zech CJ. Sourbron S. et al. Diagnostic accuracy of dynamic gadoxetic-acid-enhanced MRI and PET/CT compared in patients with liver metastases from neuroendocrine neoplasms. J Magn Reson Imaging 2014; 40: 457-466
  • 9 Jeong HT. Kim M. Park M. et al. Detection of liver metastases using gadoxetic-enhanced dynamic and 10- and 20-minute delayed phase MR imaging. J Magn Reson Imaging 2012; 35: 635-643
  • 10 Muhi A. Ichikawa T. Motosugi U. et al. Diagnosis of colorectal hepatic metastases: comparison of contrast-enhanced CT, contrast-enhanced US, superparamagnetic iron oxide-enhanced MRI, and gadoxetic acid-enhanced MRI. J Magn Reson Imaging 2011; 34: 326-335
  • 11 Frydrychowicz A. Lubner MG. Brown JJ. et al. Hepatobiliary MR imaging with gadolinium-based contrast agents. J Magn Reson Imaging 2012; 35: 492-511
  • 12 Zech CJ. Vos B. Nordell A. et al. Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 2009; 44: 305-310
  • 13 Motosugi U. Ichikawa T. Araki T. Rules, roles, and room for discussion in gadoxetic acid-enhanced magnetic resonance liver imaging: current knowledge and future challenges. Magn Reson Med Sci 2013; 12: 161-175
  • 14 Bruix J. Reig M. Rimola J. et al. Clinical decision making and research in hepatocellular carcinoma: pivotal role of imaging techniques. Hepatology 2011; 54: 2238-2244
  • 15 Davenport MS. Viglianti BL. Al-Hawary MM. et al. Comparison of Acute Transient Dyspnea after Intravenous Administration of Gadoxetate Disodium and Gadobenate Dimeglumine: Effect on Arterial Phase Image Quality. Radiology 2013; 266: 452-461
  • 16 Pietryga JA. Burke LMB. Marin D. et al. Respiratory Motion Artifact Affecting Hepatic Arterial Phase Imaging with Gadoxetate Disodium: Examination Recovery with a Multiple Arterial Phase Acquisition. Radiology 2014; 271: 426-434
  • 17 Motosugi U. Bannas P. Bookwalter CA. et al. An Investigation of Transient Severe Motion Related to Gadoxetic Acid–enhanced MR Imaging. Radiology 2016; 279: 93-102
  • 18 Davenport MS. Bashir MR. Pietryga JA. et al. Dose-Toxicity Relationship of Gadoxetate Disodium and Transient Severe Respiratory Motion Artifact. American Journal of Roentgenology 2014; 203: 796-802
  • 19 Bashir MR. Castelli P. Davenport MS. et al. Respiratory motion artifact affecting hepatic arterial phase MR imaging with gadoxetate disodium is more common in patients with a prior episode of arterial phase motion associated with gadoxetate disodium. Radiology 2015; 274: 141-148
  • 20 Kim SY. Park SH. Wu E. et al. Transient Respiratory Motion Artifact During Arterial Phase MRI With Gadoxetate Disodium: Risk Factor Analyses. American Journal of Roentgenology 2015; 204: 1220-1227
  • 21 Hayashi T. Saitoh S. Tsuji Y. et al. Influence of Gadoxetate Disodium on Oxygen Saturation and Heart Rate during Dynamic Contrast-enhanced MR Imaging. Radiology 2015; 276: 756-765
  • 22 Becker-Weidman DJS. Kalb B. Sharma P. et al. Hepatocellular Carcinoma Lesion Characterization: Single-Institution Clinical Performance Review of Multiphase Gadolinium-enhanced MR Imaging—Comparison to Prior Same-Center Results after MR Systems Improvements. Radiology 2011; 261: 824-833
  • 23 Choi SH. Lee JM. Yu NC. et al. Hepatocellular carcinoma in liver transplantation candidates: detection with gadobenate dimeglumine-enhanced MRI. Am J Roentgenol 2008; 191: 529-536
  • 24 Wald C. Russo MW. Heimbach JK. et al. New OPTN/UNOS policy for liver transplant allocation: standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology 2013; 266: 376-382
  • 25 McKenzie CA. Lim D. Ransil BJ. et al. Shortening MR image acquisition time for volumetric interpolated breath-hold examination with a recently developed parallel imaging reconstruction technique: clinical feasibility. Radiology 2004; 230: 589-594
  • 26 McClellan TR. Motosugi U. et al. Intravenous Gadoxetate Disodium Administration Reduces Breath-holding Capacity in the Hepatic Arterial Phase: A Multi-center Randomized Placebo-controlled Trial. Radiology 2017; 282: 361-368
  • 27 Bartolozzi C. Battaglia V. et al. Contrast-enhanced magnetic resonance imaging of 102 nodules in cirrhosis: correlation with histological findings on explanted livers. Abdom Imaging 2013; 38: 290-296
  • 28 Morana G. Grazioli L. et al. Solid hypervascular liver lesions: accurate identification of true benign lesions on enhanced dynamic and hepatobiliary phase magnetic resonance imaging after gadobenate dimeglumine administration. Invest Radiol 2011; 46: 225-239
  • 29 Hussain SM. Reinhold C. et al. Cirrhosis and lesion characterization at MR imaging. RadioGraphics 2009; 29: 1637-1652
  • 30 Furlan A. Close ON. et al. Respiratory-motion artefacts in liver MRI following injection of gadoxetate disodium and gadobenate dimeglumine: an intra-individual comparative study in cirrhotic patients. Clin Radiology 2017; 72: 93e1-93e6