Die Wirbelsäule 2017; 01(02): 139-151
DOI: 10.1055/s-0043-102207
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Dynamische lumbale Techniken: Erwartungen und Evidenz

Michael Stoffel
Further Information

Publication History

Publication Date:
03 May 2017 (online)

Zusammenfassung

Eine abnormale Bewegungsqualität der Wirbelsäule ist die Grundlage für schmerzhafte degenerative Prozesse an der Lendenwirbelsäule. Lange Zeit galt die rigide Stabilisierung als Goldstandard der Behandlung. Bei nicht zufriedenstellenden Behandlungsergebnissen nach rigider Stabilisierung entwickelten sich Konzepte der dynamischen lumbalen Techniken, die in diesem Beitrag vorgestellt werden.

Kernaussagen
  • Seit das Prinzip der kompletten Stilllegung (Fusion, Spondylodese) eines degenerierten Bewegungssegments infrage gestellt worden ist, konnte die Idee der bewegungserhaltenden operativen Behandlung (Non-Fusion-Techniken) immer weiterentwickelt werden.

  • Dabei stellt insbesondere die Bandscheibenprothetik (total disc replacement) eine Erfolgsgeschichte der Non-Fusions-Techniken dar – wenn auch nur für ein sehr schmales Indikationsspektrum.

  • Sie ist inzwischen eines der am besten untersuchten operativen Verfahren an der Wirbelsäule, deren Überlegenheit zur konservativen Therapie und zur Spondylodese in RCTs gezeigt werden konnte (Level-I-Evidenz) und das die Erwartung des nachhaltigen Bewegungserhalts erfüllen konnte.

  • Der Nukleusersatz (nucleus replacement) konnte bisher trotz pathophysiologisch interessantem Konzept und einigen recht vielversprechenden Ergebnissen in klinischen Kohortenstudien (Level-II-2-Evidenz) [38] im klinischen Alltag nicht Fuß fassen.

  • Bei den Pedikelschrauben-basierten dynamischen Systemen befindet man sich derzeit noch in einem präliminären Evidenzlevel. In mehreren Kohortenstudien (Level II-2) konnte nachgewiesen werden, dass das Prinzip des „load sharings” klinisch funktioniert, es allerdings teilweise auch bei dynamischen Systemen zu Fusionen im Indexsegment kommt (z. B. Dynesis).

  • Das optimale Implantat und das passende Indikationsspektrum müssen noch genauer definiert werden. Außerdem steht noch der direkte Vergleich mit der Spondylodese aus.

  • Hauptproblem der interspinösen Spreizer scheint die Kurzlebigkeit des klinischen Effekts zu sein

  • Welche der dynamischen lumbalen Techniken die Erwartungen in Bezug auf Nachhaltigkeit und Minimierung der Anschlusssegmentdegeneration erfüllen können, wird in zukünftigen Studien zu erarbeiten sein.

 
  • Literatur

  • 1 Quint U, Wilke HJ. Grading of degenerative disk disease and functional impairment: imaging versus patho-anatomical findings. Eur Spine J 2008; 17: 1705-1713
  • 2 Schmoelz W, Onder U, Martin A. et al. Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment. Eur Spine J 2009; 18: 1478-1485
  • 3 Fritzell P, Hägg O, Nordwall A. et al. Complications in lumbar fusion surgery for chronic low back pain: comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar Spine Study Group. Eur Spine J 2003; 12: 178-189
  • 4 Ghiselli G, Wang JC, Bhatia NN. et al. Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 2004; 86-A: 1497-1503
  • 5 Fernström U. Arthroplasty with intercorporal endoprothesis in herniated disc and in painful disc. Acta Chir Scand 1966; 357 : 154-159
  • 6 Bao QB, McCullen GM, Higham PA. et al. The artificial disc: theory, design and materials. Biomaterials 1996; 17: 1157-1167
  • 7 Ray CD. The PDN prosthetic disc-nucleus device. Eur Spine J 2002; 11 (Suppl. 02) S137-S142
  • 8 Schönmayr R, Busch C, Lotz C. et al. Prosthetic disc nucleus implants: the Wiesbaden feasibility study 2 years follow-up in ten patients. Riv Neuroradiol 1999; 12 : 163-170
  • 9 Klara PM, Rray CD. Artificial nucleus replacement: clinical experience. Spine 2002; 27: 1374-1377
  • 10 Bertagnoli R, Schönmayr R. Surgical and clinical results with the PDN prosthetic disc-nucleus device. Eur Spine J 2002; 11 (Suppl. 02) S143-S148
  • 11 Büttner-Janz K, Hochschuler SH, McAfee PC. The Artificial Disc. Berlin: Springer; 2003
  • 12 Braithwaite I, White J, Saifuddin A. et al. Vertebral end-plate (Modic) changes on lumbar spine MRI: correlation with pain reproduction at lumbar discography. Eur Spine J 1998; 7: 363-368
  • 13 Boswell MV, Colson JD, Sehgal N. et al. A systematic review of therapeutic facet joint interventions in chronic spinal pain. Pain Physician 2007; 10: 229-253
  • 14 Hellum C, Johnsen LG, Storheim K. et al. Surgery with disc prosthesis versus rehabilitation in patients with low back pain and degenerative disc: two year follow-up of randomised study. BMJ 2011; 342: d2786
  • 15 Hellum C, Berg L, Gjertsen Ø. Norwegian Spine Study Group. et al. Adjacent level degeneration and facet arthropathy after disc prosthesis surgery or rehabilitation in patients with chronic low back pain and degenerative disc: second report of a randomized study. Spine (Phila Pa 1976) 2012; 37: 2063-2073
  • 16 Jacobs W, Van der Gaag NA, Tuschel A. et al. Total disc replacement for chronic back pain in the presence of disc degeneration. Cochrane Database Syst Rev 2012; 9: CD008326
  • 17 Wei J, Song Y, Sun L. et al. Comparison of artificial total disc replacement versus fusion for lumbar degenerative disc disease: a meta-analysis of randomized controlled trials. Int Orthop 2013; 37: 1315-1325
  • 18 Siepe CJ, Heider F, Wiechert K. et al. Mid- to long-term results of total lumbar disc replacement: a prospective analysis with 5- to 10-year follow-up. Spine J 2014; 14: 1417-1431
  • 19 Grevitt MP, Gardner AD, Spilsbury J. et al. The Graf stabilisation system: early results in 50 patients. Eur Spine J 1995; 4: 169-175 ; discussion 135
  • 20 Markwalder TM, Wenger M. Dynamic stabilization of lumbar motion segments by use of Graf's ligaments: results with an average follow-up of 7.4 years in 39 highly selected, consecutive patients. Acta Neurochir (Wien) 2003; 145: 209-214 (discussion 214)
  • 21 Hadlow SV, Fagan AB, Hillier TM. et al. The graft ligamentoplasty procedure: comparison with posterolateral fusion in the management of low back pain. Spine 1998; 23: 1172-1179
  • 22 Schmoelz W, Huber JF, Nydegger T. et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 2003; 16: 418-423
  • 23 Bothmann M, Kast E, Boldt GJ. et al. Dynesys fixation for lumbar spine degeneration. Neurosurg Rev 2008; 31: 189-196
  • 24 Grob D, Benini A, Junge A. et al. Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976) 2005; 30: 324-331
  • 25 Strube P, Tohtz S, Hoff E. et al. Dynamic stabilization adjacent to single-level fusion: part I. Biomechanical effects on lumbar spinal motion. Eur Spine J 2010; 19: 2171-2180
  • 26 Hoff E, Strube P, Gross C. et al. Sequestrectomy with additional transpedicular dynamic stabilization for the treatment of lumbar disc herniation: no clinical benefit after 10 years follow-up. Spine (Phila Pa 1976) 2013; 38: 887-895
  • 27 Hoppe S, Schwarzenbach O, Aghayev E. et al. Long-Term Outcome After Monosegmental L4/5 Stabilization for Degenerative Spondylolisthesis With the Dynesys Device. Clin Spine Surg 2016; 29: 72-77
  • 28 Payer M, Smoll NR, Oezkan N. et al. Dynamic transpedicular stabilisation and decompression in single-level degenerative anterolisthesis and stenosis. Acta Neurochir (Wien) 2014; 156: 221-227
  • 29 Bozkuş H, Senoğlu M, Baek S. et al. Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization. J Neurosurg Spine 2010; 12: 183-189
  • 30 Stoffel M, Behr M, Reinke A. et al. Pedicle screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic-system: a prospective observation. Acta Neurochir (Wien) 2010; 152: 835-843
  • 31 Schmoelz W, Onder U, Martin A. et al. Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment. Eur Spine J 2009; 18: 1478-1485
  • 32 Maleci A, Sambale RD, Schiavone M. et al. Nonfusion stabilization of the degenerative lumbar spine. J Neurosurg Spine 2011; 15: 151-158
  • 33 Zucherman JF, Hsu KY, Hartjen CA. et al. A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results. Spine (Phila Pa 1976) 2005; 30: 1351-1358
  • 34 Anderson PA, Tribus CB, Kitchel SH. Treatment of neurogenic claudication by interspinous decompression: application of the X STOP device in patients with lumbar degenerative spondylolisthesis. J Neurosurg Spine 2006; 4: 463-471
  • 35 Strömqvist B, Berg S, Gerdhem P. et al. X-Stop versus decompressive surgery for lumbar neurogenic intermittent claudication: a randomized controlled trial with 2 years follow-up. Spine 2013; 38: 1436-1442
  • 36 Davis 1 RJ, Errico TJ, Bae H. et al. Decompression and Coflex interlaminar stabilization compared with decompression and instrumented spinal fusion for spinal stenosis and low-grade degenerative spondylolisthesis: two-year results from the prospective, randomized, multicenter, Food and Drug Administration Investigational Device Exemption trial. Spine (Phila Pa 1976) 2013; 38: 1529-1539
  • 37 Kantelhardt SR, Török E, Gempt J. et al. Safety and efficacy of a new percutaneously implantable interspinous process device. Acta Neurochir (Wien) 2010; 152: 1961-1967
  • 38 U.S. Preventive Services Task Force. Guide to clinical preventive services: report of the U.S. Preventive Services Task Force. DIANE Publishing; 1989. ISBN: 978-1-56806-297-6