RSS-Feed abonnieren
DOI: 10.1055/s-0042-1760102
Role of Dietary Flavonoids in Preventing COVID-19 Infection and Other Infectious Diseases: A Mini Review
Funding None.Abstract
Flavonoids are a large group of naturally occurring polyphenolic compounds that are almost universally present in various plant parts such as fruits, berries, leaves, and tubers. These compounds are synthesized in plants in reaction to environmental stressors such as microbial infections. The antioxidant properties in these flavonoids provide us with numerous health benefits. They can be extracted from said natural sources via methods such as maceration and boiling all the way to advanced methods such as microwaves and ultrasounds.
Numerous studies have been conducted to research the protective role that flavonoids can play in preventing infectious diseases in humans. The present modalities of treating such infectious diseases rely solely on chemotherapeutic agents and adjunctive therapies such as palliative and supportive care. These chemotherapeutic agents, primarily antibiotics, cause a degeneration of our immunity and an increased susceptibly to several other diseases. Thus, it is crucial that our methods in dealing with infections focus on prevention. This can be achieved by strengthening our immune system, which is the primary line of defense against such diseases. Flavonoids can help boost our immunity, fight infections, and decrease the incidence of antibiotic resistance.
Hence, these natural compounds are being largely studied and used as nutraceuticals to supplement our daily diet and successfully reduce the occurrence of major infectious diseases in our body.
Publikationsverlauf
Artikel online veröffentlicht:
04. Januar 2023
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India
-
References
- 1 Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal 2013; 2013: 162750 DOI: 10.1155/2013/162750.
- 2 Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. Futur J Pharm Sci 2021; 7 (01) 25 DOI: 10.1186/s43094-020-00161-8.
- 3 Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci 2016; 5: e47 DOI: 10.1017/jns.2016.41.
- 4 Chaves JO, de Souza MC, da Silva LC. et al. Extraction of flavonoids from natural sources using modern techniques. Front Chem 2020; 8: 507887 DOI: 10.3389/fchem.2020.507887.
- 5 Khurshid Z, Asiri FYI, Al Wadaani H. Human saliva: non-invasive fluid for detecting novel coronavirus (2019-nCoV). Int J Environ Res Public Health 2020; 17 (07) 2225
- 6 Yadalam PK, Balaji TM, Varadarajan S. et al. Assessing the therapeutic potential of agomelatine, ramelteon, and melatonin against SARS-CoV-2. Saudi J Biol Sci 2022; 29 (05) 3140-3150
- 7 Ghasemi S, Dashti M, Fahimipour A. et al. Onset of mucormycosis in patients with COVID-19: a systematic review on patients' characteristics. Eur J Dent 2023; 17 (01) 24-38 DOI: 10.1055/s-0042-1751003.
- 8 Drexler M. Institute of medicine (US) What you need to know about infectious disease. Washington, DC: National Academies Press; doi. 2010 May 22;10:13006
- 9 Yuan G, Guan Y, Yi H, Lai S, Sun Y, Cao S. Antibacterial activity and mechanism of plant flavonoids to gram-positive bacteria predicted from their lipophilicities. Sci Rep 2021; 11 (01) 10471 DOI: 10.1038/s41598-021-90035-7.
- 10 Khan MT, Moeen F, Safi SZ, Said F, Mansoor A, Khan A. The structural, physical, and in vitro biological performance of freshly mixed and set endodontic sealers. Eur Endod J 2021; 6 (01) 98-109
- 11 Said F, Moeen F, Khan MT. et al. Cytotoxicity, morphology and chemical composition of two luting cements: an in vitro study. Pesqui Bras Odontopediatria Clin Integr 2020; 20: 1-8
- 12 Mansoor A, Khan MT, Mehmood M, Khurshid Z, Ali MI, Jamal A. Synthesis and characterization of titanium oxide nanoparticles with a novel biogenic process for dental application. Nanomaterials (Basel) 2022; 12 (07) 1078
- 13 Chinedu OC, Nnaedozie AS. Functional analysis of flavonoids in some higher and lower plant vegetables eaten in eastern Nigeria. International Journal of Engineering, Science and Mathematics 2017; 6 (07) 519-532 DOI: 10.13140/RG.2.2.28021.88809.
- 14 Wittschier N, Lengsfeld C, Vorthems S. et al. Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 2007; 59 (06) 777-786 DOI: 10.1211/jpp.59.6.0004.
- 15 Mayer R, Stecher G, Wuerzner R. et al. Proanthocyanidins: target compounds as antibacterial agents. J Agric Food Chem 2008; 56 (16) 6959-6966 DOI: 10.1021/jf800832r.
- 16 Nowack R. Cranberry juice– a well-characterized folk-remedy against bacterial urinary tract infection. Wien Med Wochenschr 2007; 157 (13-14): 325-330 DOI: 10.1007/s10354-007-0432-8.
- 17 La VD, Labrecque J, Grenier D. Cytoprotective effect of proanthocyanidin-rich cranberry fraction against bacterial cell wall-mediated toxicity in macrophages and epithelial cells. Phytother Res 2009; 23 (10) 1449-1452 DOI: 10.1002/ptr.2799.
- 18 Yanagawa Y, Yamamoto Y, Hara Y, Shimamura T. A combination effect of epigallocatechin gallate, a major compound of green tea catechins, with antibiotics on Helicobacter pylori growth in vitro. Curr Microbiol 2003; 47 (03) 244-249 DOI: 10.1007/s00284-002-3956-6.
- 19 Lee KM, Kim WS, Lim J. et al. Antipathogenic properties of green tea polyphenol epigallocatechin gallate at concentrations below the MIC against enterohemorrhagic Escherichia coli O157:H7. J Food Prot 2009; 72 (02) 325-331 DOI: 10.4315/0362-028x-72.2.325.
- 20 Nakayama M, Suzuki K, Toda M, Okubo S, Hara Y, Shimamura T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res 1993; 21 (04) 289-299 DOI: 10.1016/0166-3542(93)90008-7.
- 21 Weber JM, Ruzindana-Umunyana A, Imbeault L, Sircar S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res 2003; 58 (02) 167-173 DOI: 10.1016/s0166-3542(02)00212-7.
- 22 Ho HY, Cheng ML, Weng SF, Leu YL, Chiu DT. Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem 2009; 57 (14) 6140-6147 DOI: 10.1021/jf901128u.
- 23 Hirasawa M, Takada K. Multiple effects of green tea catechin on the antifungal activity of antimycotics against Candida albicans . J Antimicrob Chemother 2004; 53 (02) 225-229 DOI: 10.1093/jac/dkh046.
- 24 Alvesalo J, Vuorela H, Tammela P, Leinonen M, Saikku P, Vuorela P. Inhibitory effect of dietary phenolic compounds on Chlamydia pneumoniae in cell cultures. Biochem Pharmacol 2006; 71 (06) 735-741 DOI: 10.1016/j.bcp.2005.12.006.
- 25 Agüero MB, Gonzalez M, Lima B. et al. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: phytochemical characterization and antifungal activity. J Agric Food Chem 2010; 58 (01) 194-201 DOI: 10.1177/1934578 × 1100600618.
- 26 Côté J, Caillet S, Doyon G, Sylvain JF, Lacroix M. Bioactive compounds in cranberries and their biological properties. Crit Rev Food Sci Nutr 2010; 50 (07) 666-679 DOI: 10.1080/10408390903044107.
- 27 Gescher K, Hensel A, Hafezi W, Derksen A, Kühn J. Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1. Antiviral Res 2011; 89 (01) 9-18 DOI: 10.1016/j.antiviral.2010.10.007.
- 28 Puupponen-Pimiä R, Nohynek L, Meier C. et al. Antimicrobial properties of phenolic compounds from berries. J Appl Microbiol 2001; 90 (04) 494-507 DOI: 10.1046/j.1365-2672.2001.01271.x.
- 29 Engels C, Schieber A, Gänzle MG. Inhibitory spectra and modes of antimicrobial action of gallotannins from mango kernels (Mangifera indica L.). Appl Environ Microbiol 2011; 77 (07) 2215-2223 DOI: 10.1128/AEM.02521-10.
- 30 Yamaguchi MU, Garcia FP, Cortez DA, Ueda-Nakamura T, Filho BP, Nakamura CV. Antifungal effects of Ellagitannin isolated from leaves of Ocotea odorifera (Lauraceae). Antonie van Leeuwenhoek 2011; 99 (03) 507-514 DOI: 10.1002/2211-5463.12361.
- 31 Martino V, Morales J, Martínez-Irujo JJ, Font M, Monge A, Coussio J. Two ellagitannins from the leaves of Terminalia triflora with inhibitory activity on HIV-1 reverse transcriptase. Phytother Res 2004; 18 (08) 667-669 DOI: 10.1002/ptr.1065.
- 32 Notka F, Meier G, Wagner R. Concerted inhibitory activities of Phyllanthus amarus on HIV replication in vitro and ex vivo. Antiviral Res 2004; 64 (02) 93-102 DOI: 10.1016/j.antiviral.2004.06.010.
- 33 Ito H, Miyake M, Nishitani E. et al. Cowaniin, a C-glucosidic ellagitannin dimer linked through catechin from Cowania mexicana . Chem Pharm Bull (Tokyo) 2007; 55 (03) 492-494 DOI: 10.1248/cpb.55.492.
- 34 Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005; 26 (05) 343-356 DOI: 10.1016/j.ijantimicag.2005.09.002.
- 35 Ninfali P, Antonelli A, Magnani M, Scarpa ES. Antiviral properties of flavonoids and delivery strategies. Nutrients 2020; 12 (09) 2534 DOI: 10.3390/nu12092534.
- 36 Alzaabi MM, Hamdy R, Ashmawy NS. et al. Flavonoids are promising safe therapy against COVID-19. Phytochem Rev 2021; 21 (01) 291-312
- 37 Aboody MSA, Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics (Basel) 2020; 9 (02) 45 DOI: 10.3390/antibiotics9020045.
- 38 Ganeshpurkar A, Saluja AK. The pharmacological potential of rutin. Saudi Pharm J 2017; 25 (02) 149-164 DOI: 10.1016/j.jsps.2016.04.025.
- 39 Steinbruch M, Nunes C, Gama R. et al. Is nonmicronized diosmin 600 mg as effective as micronized diosmin 900 mg plus hesperidin 100 mg on chronic venous disease symptoms? Results of a noninferiority study. Int J Vasc Med 2020; 2020: 4237204 DOI: 10.1155/2020/4237204.
- 40 Monreal M, Callejas JM, Martorell A, Sahuquillo JC, Contel E. Prevention of post-thrombotic syndrome with hidrosmina: a prospective pilot study. Phlebology 1997; 12 (01) 21-24 DOI: 10.1177/026835559701200104.
- 41 Hesch K. Agents for treatment of overactive bladder: a therapeutic class review. Proc Bayl Univ Med Cent 2007; 20 (03) 307-314 Taylor & Francis. DOI: 10.1080/08998280.2007.11928310.
- 42 Sharifi-Rad J, Quispe C, Imran M. et al. Genistein: an integrative overview of its mode of action, pharmacological properties, and health benefits. Oxid Med Cell Longev 2021; 2021: 3268136 DOI: 10.1155/2021/3268136.
- 43 Ma XM, Li YX, Zhang HX, Liu Q, Su XH, Xing LX. Transcriptomic evidence that insulin signalling pathway regulates the ageing of subterranean termite castes. Sci Rep 2020; 10 (01) 1-3
- 44 Patel DK, Patel K, Gadewar M, Tahilyani V. Pharmacological and bioanalytical aspects of galangin-a concise report. Asian Pac J Trop Biomed 2012; 2 (01) S449-S455 DOI: 10.1016/S2221-1691(12)60205-6.
- 45 Li Y, Yao J, Han C. et al. Quercetin, inflammation and immunity. Nutrients 2016; 8 (03) 167 DOI: 10.3390/nu8030167.
- 46 Imran E, Khurshid Z, M Al Qadhi AA, A Al-Quraini AA, Tariq K. Preprocedural use of povidone-iodine mouthwash during dental procedures in the COVID-19 pandemic. Eur J Dent 2020; 14 (S 01): S182-S184
- 47 Patil JS, Sarasija S. Pulmonary drug delivery strategies: a concise, systematic review. Lung India 2012; 29 (01) 44-49 44.doi.org/10.4103/0970-2113.92361