CC BY-NC-ND 4.0 · Indian J Radiol Imaging 2023; 33(01): 089-097
DOI: 10.1055/s-0042-1758880
Review Article

Blood in the Brain on Susceptibility-Weighted Imaging

Neeraj Jain
1   Department of Radio Diagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Sunil Kumar
1   Department of Radio Diagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Anuradha Singh
1   Department of Radio Diagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
2   Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
,
Rajendra Vishnu Phadke
1   Department of Radio Diagnosis, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
› Institutsangaben
Funding None.

Abstract

Intraparenchymal brain hemorrhage is not uncommon and results from a wide variety of causes ranging from trauma to tumor. Many a time, it is not possible to determine the exact cause of non-traumatic hemorrhage on conventional magnetic resonance imaging (MRI). Susceptibility-weighted imaging (SWI) is a high-resolution (3D) gradient-echo sequence. It is extremely sensitive to the inhomogeneity of the local magnetic field and highly useful in identifying the small amount of hemorrhage, which may be inapparent on other MR pulse sequences. In this review, we present different pattern of an intra-parenchymal brain hemorrhage on SWI with emphasis on differential diagnosis.



Publikationsverlauf

Artikel online veröffentlicht:
07. Dezember 2022

© 2022. Indian Radiological Association. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC. Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. Am J Neuroradiol 2009; 30 (01) 19-30
  • 2 Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 2009; 29 (05) 1433-1449
  • 3 Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. Am J Neuroradiol 2009; 30 (02) 232-252
  • 4 Sood S, Gupta R, Modi J, Sharma J. Susceptibility weighted imaging: physics and clinical applications in neuroimaging at 3 Tesla. Conference Paper. March 2014 DOI: 10.1594/ecr2014/C-1472
  • 5 Lee YJ, Lee S, Jang J. et al. Findings regarding an intracranial hemorrhage on the phase image of a susceptibility-weighted image (SWI), according to the stage, location, and size. Investig Magn Reson Imaging 2015; 19 (02) 107-113
  • 6 Zimmerman RD, Yousem DM, Grossman RI. Vascular diseases of the brain. Neuroradiology: the requisites. 3rd ed.. St. Louis: Mosby; 2010: 141-160
  • 7 Yamada N, Imakita S, Sakuma T, Takamiya M. Intracranial calcification on gradient-echo phase image: depiction of diamagnetic susceptibility. Radiology 1996; 198 (01) 171-178
  • 8 Scheid R, Ott DV, Roth H, Schroeter ML, von Cramon DY. Comparative magnetic resonance imaging at 1.5 and 3 Tesla for the evaluation of traumatic microbleeds. J Neurotrauma 2007; 24 (12) 1811-1816
  • 9 Nandigam RN, Viswanathan A, Delgado P. et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009; 30 (02) 338-343
  • 10 Blitstein MK, Tung GA. MRI of cerebral microhemorrhages. Am J Roentgenol 2007; 189 (03) 720-725
  • 11 Haller S, Vernooij MW, Kuijer JPA, Larsson EM, Jäger HR, Barkhof F. Cerebral microbleeds: imaging and clinical significance. Radiology 2018; 287 (01) 11-28
  • 12 Baliyan V, Nadarajah J, Kumar A, Ahmad Z. Cerebral malaria: susceptibility weighted MRI. Asian Pacific J Trop Dis 2015; 5: 239-241
  • 13 Soni BK, Das DSR, George RA, Aggarwal R, Sivasankar R. MRI features in dengue encephalitis: a case series in South Indian tertiary care hospital. Indian J Radiol Imaging 2017; 27 (02) 125-128
  • 14 Jugpal TS, Dixit R, Garg A. et al. Spectrum of findings on magnetic resonance imaging of the brain in patients with neurological manifestations of dengue fever. Radiol Bras 2017; 50 (05) 285-290
  • 15 Jeong YJ, Kim S, Wook YD, Lee JW, Kim KI, Lee SH. Scrub typhus: clinical, pathologic, and imaging findings. Radiographics 2007; 27 (01) 161-172
  • 16 Sood S, Sharma S, Khanna S. Role of advanced MRI brain sequences in diagnosing neurological complications of scrub typhus. J Clin Imaging Sci 2015; 5: 11
  • 17 Neyaz Z, Bhattacharya V, Muzaffar N, Gurjar M. Brain MRI findings in a patient with scrub typhus infection. Neurol India 2016; 64 (04) 788-792
  • 18 Zeng H, Quinet S, Huang W. et al. Clinical and MRI features of neurological complications after influenza A (H1N1) infection in critically ill children. Pediatr Radiol 2013; 43 (09) 1182-1189
  • 19 Gulati P, Saini L, Jawa A, Das CJ. MRI in H1N1 encephalitis. Indian J Pediatr 2013; 80 (02) 157-159
  • 20 Haktanir A. MR imaging in novel influenza A (H1N1)-associated meningoencephalitis. AJNR Am J Neuroradiol 2010; 31 (03) 394-395
  • 21 Chen JJ, Carletti F, Young V, Mckean D, Quaghebeur G. MRI differential diagnosis of suspected multiple sclerosis. Clin Radiol 2016; 71 (09) 815-827
  • 22 Abdel Razek AA, Alvarez H, Bagg S, Refaat S, Castillo M. Imaging spectrum of CNS vasculitis. Radiographics 2014; 34 (04) 873-894
  • 23 Aviv RI, Benseler SM, Silverman ED. et al. MR imaging and angiography of primary CNS vasculitis of childhood. Am J Neuroradiol 2006; 27 (01) 192-199
  • 24 Singh S, John S, Joseph TP, Soloman T. Primary angiitis of the central nervous system: MRI features and clinical presentation. Australas Radiol 2003; 47 (02) 127-134
  • 25 Lee MS, Kim WC. Intracranial hemorrhage associated with idiopathic thrombocytopenic purpura: report of seven patients and a meta-analysis. Neurology 1998; 50 (04) 1160-1163
  • 26 Flores A, Buchanan GR. Occult hemorrhage in children with severe ITP. Am J Hematol 2016; 91 (03) 287-290
  • 27 Fazekas F, Kleinert R, Roob G. et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. Am J Neuroradiol 1999; 20 (04) 637-642
  • 28 Zafar A, Khan FS. Clinical and radiological features of intracerebral haemorrhage in hypertensive patients. J Pak Med Assoc 2008; 58 (07) 356-358
  • 29 Hefzy HM, Bartynski WS, Boardman JF, Lacomis D. Hemorrhage in posterior reversible encephalopathy syndrome: imaging and clinical features. Am J Neuroradiol 2009; 30 (07) 1371-1379
  • 30 Lesnik Oberstein SAJ, van den Boom R, van Buchem MA. et al; Dutch CADASIL Research Group. Cerebral microbleeds in CADASIL. Neurology 2001; 57 (06) 1066-1070
  • 31 Dichgans M, Holtmannspötter M, Herzog J, Peters N, Bergmann M, Yousry TA. Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 2002; 33 (01) 67-71