Open Access
CC BY 4.0 · Eur J Dent 2023; 17(04): 1029-1036
DOI: 10.1055/s-0042-1758796
Original Article

Evaluation of Fitness and Accuracy of Milled and Three-Dimensionally Printed Inlays

Autoren

  • Yoen Ah Lim

    1   Department of Conservative Dentistry, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
  • Jeong Mi Kim

    2   Wonkwang University Dental Hospital, Central Dental Laboratory, Iksan, Republic of Korea
  • Yoorina Choi

    1   Department of Conservative Dentistry, School of Dentistry, Wonkwang University, Iksan, Republic of Korea
  • Sujung Park

    1   Department of Conservative Dentistry, School of Dentistry, Wonkwang University, Iksan, Republic of Korea

Funding This study was supported by Wonkwang University in 2021.

Abstract

Objective This article compares and evaluates the marginal and internal fitness and three-dimensional (3D) accuracy of class II inlays fabricated using Tescera (TS) resin, milling of hybrid and zirconia blocks, and 3D printing with NextDent C&B.

Materials and Methods Fifty-two mesio-occlusal inlays were fabricated using conventional method with TS, milling of Lava Ultimate (LU), milling of Zolid Fx multilayer (ZR), and 3D printing (n = 13 each). The marginal and internal fitness were evaluated at six points in the mesio-distal section of a replica under a digital microscope (160× magnification), and the accuracy was evaluated using 3D software. Analyses were conducted using t-test, one-way analysis of variance (ANOVA) and two-way ANOVA, while Duncan's multiple range test was used for post hoc analyses (α = 0.05).

Results The marginal and internal fitness of the 3D and ZR were significantly superior to that of the TS and LU. For LU, ZR, and 3D, a significant discrepancy between the marginal gap and internal gap was observed (p < 0.05). On evaluating accuracy, trueness was significantly higher in ZR than in TS and LU; precision was significantly higher in 3D and ZR than in TS and LU (p < 0.05).

Conclusion The marginal and internal fitness and the accuracy of TS, ZR, and 3D were within the clinically acceptable range. The marginal and internal fitness and accuracy of 3D were better than those of TS and LU, which are commonly used in dentistry. There is immense potential for using 3D-printed inlays in routine clinical practice.

Financial Interest

The authors do not have any financial interest in the companies whose materials are included in this article.




Publikationsverlauf

Artikel online veröffentlicht:
04. Januar 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India