Subscribe to RSS
DOI: 10.1055/s-0042-1758692
Recent Research Advances in Small-Molecule Pan-PIM Inhibitors
Funding The work was approved by the Natural Science Foundation of Shanghai with Grant No. 19ZR1437900.
Abstract
PIM kinase is consequently emerging as a promising target for cancer therapeutics and immunomodulation. PIM kinases are overexpressed in a variety of hematological malignancies and solid tumors, and their inhibition has become a strong therapeutic interest. Currently, some pan-PIM kinase inhibitors are being developed under different phases of clinical trials. Based on the different scaffold structures, they can be classified into various subclasses. The X-ray structure of the kinase complex outlines the rationale of hit compound confirmation in the early stage. Structure–activity relationships allow us to rationally explore chemical space and further optimize multiple physicochemical and biological properties. This review focuses on the discovery and development of small-molecule pan-PIM kinase inhibitors in the current research, and hopes to provide guidance for future exploration of the inhibitors.
Keywords
pan-PIM inhibitors - structure classification - lead optimization - structure–activity relationshipPublication History
Received: 23 May 2022
Accepted: 14 October 2022
Article published online:
27 December 2022
© 2022. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95 (06) 1004-1015
- 2 Daenthanasanmak A, Wu Y, Iamsawat S. et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest 2018; 128 (07) 2787-2801
- 3 Eerola SK, Kohvakka A, Tammela TLJ, Koskinen PJ, Latonen L, Visakorpi T. Expression and ERG regulation of PIM kinases in prostate cancer. Cancer Med 2021; 10 (10) 3427-3436
- 4 Kunder R, Velyunskiy M, Dunne SF. et al. Synergistic PIM kinase and proteasome inhibition as a therapeutic strategy for MYC-overexpressing triple-negative breast cancer. Cell Chem Biol 2022; 29 (03) 358.e5-372.e5
- 5 Nawijn MC, Alendar A, Berns A. For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 2011; 11 (01) 23-34
- 6 Narlik-Grassow M, Blanco-Aparicio C, Carnero A. The PIM family of serine/threonine kinases in cancer. Med Res Rev 2014; 34 (01) 136-159
- 7 Warfel NA, Kraft AS. PIM kinase (and Akt) biology and signaling in tumors. Pharmacol Ther 2015; 151: 41-49
- 8 Jackson LJ, Pheneger JA, Pheneger TJ. et al. The role of PIM kinases in human and mouse CD4+ T cell activation and inflammatory bowel disease. Cell Immunol 2012; 272 (02) 200-213
- 9 Wu J, Chu E, Kang Y. PIM kinases in multiple myeloma. Cancers (Basel) 2021; 13 (17) 4304
- 10 Chatterjee S, Chakraborty P, Daenthanasanmak A. et al. Targeting PIM kinase with PD1 inhibition improves immunotherapeutic antitumor T-cell response. Clin Cancer Res 2019; 25 (03) 1036-1049
- 11 Liu Z, Han M, Ding K, Fu R. The role of Pim kinase in immunomodulation. Am J Cancer Res 2020; 10 (12) 4085-4097
- 12 Jacobs MD, Black J, Futer O. et al. Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002. J Biol Chem 2005; 280 (14) 13728-13734
- 13 Zhao Y, Aziz AUR, Zhang H, Zhang Z, Li N, Liu B. A systematic review on active sites and functions of PIM-1 protein. Hum Cell 2022; 35 (02) 427-440
- 14 Drygin D, Haddach M, Pierre F, Ryckman DM. Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy. J Med Chem 2012; 55 (19) 8199-8208
- 15 Pogacic V, Bullock AN, Fedorov O. et al. Structural analysis identifies imidazo[1,2-b]pyridazines as PIM kinase inhibitors with in vitro antileukemic activity. Cancer Res 2007; 67 (14) 6916-6924
- 16 Chen LS, Redkar S, Bearss D, Wierda WG, Gandhi V. Pim kinase inhibitor, SGI-1776, induces apoptosis in chronic lymphocytic leukemia cells. Blood 2009; 114 (19) 4150-4157
- 17 Paíno T, González-Méndez L, San-Segundo L. et al. Protein translation inhibition is involved in the activity of the Pan-PIM kinase inhibitor PIM447 in combination with pomalidomide-dexamethasone in multiple myeloma. Cancers (Basel) 2020; 12 (10) 2743
- 18 Iida S, Sunami K, Minami H. et al. A phase I, dose-escalation study of oral PIM447 in Japanese patients with relapsed and/or refractory multiple myeloma. Int J Hematol 2021; 113 (06) 797-806
- 19 Raab MS, Thomas SK, Ocio EM. et al. The first-in-human study of the pan-PIM kinase inhibitor PIM447 in patients with relapsed and/or refractory multiple myeloma. Leukemia 2019; 33 (12) 2924-2933
- 20 Mazzacurati L, Collins RJ, Pandey G. et al. The pan-PIM inhibitor INCB053914 displays potent synergy in combination with ruxolitinib in models of MPN. Blood Adv 2019; 3 (22) 3503-3514
- 21 Tao ZF, Hasvold LA, Leverson JD. et al. Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM) kinases. J Med Chem 2009; 52 (21) 6621-6636
- 22 López-Ramos M, Prudent R, Moucadel V. et al. New potent dual inhibitors of CK2 and Pim kinases: discovery and structural insights. FASEB J 2010; 24 (09) 3171-3185
- 23 Tsuhako AL, Brown DS, Koltun ES. et al. The design, synthesis, and biological evaluation of PIM kinase inhibitors. Bioorg Med Chem Lett 2012; 22 (11) 3732-3738
- 24 Pierre F, Stefan E, Nédellec AS. et al. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines: a novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg Med Chem Lett 2011; 21 (22) 6687-6692
- 25 Pastor J, Oyarzabal J, Saluste G. et al. Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors. Bioorg Med Chem Lett 2012; 22 (04) 1591-1597
- 26 Blanco-Aparicio C, Collazo AM, Oyarzabal J. et al. Pim 1 kinase inhibitor ETP-45299 suppresses cellular proliferation and synergizes with PI3K inhibition. Cancer Lett 2011; 300 (02) 145-153
- 27 Martínez-González S, Rodríguez-Arístegui S, Gómez de la Oliva CA. et al. Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors. Eur J Med Chem 2019; 168: 87-109
- 28 Casuscelli F, Ardini E, Avanzi N. et al. Discovery and optimization of pyrrolo[1,2-a]pyrazinones leads to novel and selective inhibitors of PIM kinases. Bioorg Med Chem 2013; 21 (23) 7364-7380
- 29 Bullock AN, Russo S, Amos A. et al. Crystal structure of the PIM2 kinase in complex with an organoruthenium inhibitor. PLoS One 2009; 4 (10) e7112
- 30 Xia Z, Knaak C, Ma J. et al. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J Med Chem 2009; 52 (01) 74-86
- 31 Beharry Z, Zemskova M, Mahajan S. et al. Novel benzylidene-thiazolidine-2,4-diones inhibit Pim protein kinase activity and induce cell cycle arrest in leukemia and prostate cancer cells. Mol Cancer Ther 2009; 8 (06) 1473-1483
- 32 Hiasa M, Teramachi J, Oda A. et al. Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma. Leukemia 2015; 29 (01) 207-217
- 33 Fujii S, Nakamura S, Oda A. et al. Unique anti-myeloma activity by thiazolidine-2,4-dione compounds with Pim inhibiting activity. Br J Haematol 2018; 180 (02) 246-258
- 34 Dakin LA, Block MH, Chen H. et al. Discovery of novel benzylidene-1,3-thiazolidine-2,4-diones as potent and selective inhibitors of the PIM-1, PIM-2, and PIM-3 protein kinases. Bioorg Med Chem Lett 2012; 22 (14) 4599-4604
- 35 Keeton EK, McEachern K, Dillman KS. et al. AZD1208, a potent and selective pan-Pim kinase inhibitor, demonstrates efficacy in preclinical models of acute myeloid leukemia. Blood 2014; 123 (06) 905-913
- 36 Cortes J, Tamura K, DeAngelo DJ. et al. Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers. Br J Cancer 2018; 118 (11) 1425-1433
- 37 Harada M, Benito J, Yamamoto S. et al. The novel combination of dual mTOR inhibitor AZD2014 and pan-PIM inhibitor AZD1208 inhibits growth in acute myeloid leukemia via HSF pathway suppression. Oncotarget 2015; 6 (35) 37930-37947
- 38 Flanders Y, Dumas S, Caserta J. et al. A versatile synthesis of novel pan-PIM kinase inhibitors with initial SAR study. Tetrahedron Lett 2015; 56 (23) 3186-3190
- 39 Bataille CJ, Brennan MB, Byrne S. et al. Thiazolidine derivatives as potent and selective inhibitors of the PIM kinase family. Bioorg Med Chem 2017; 25 (09) 2657-2665
- 40 Quevedo CE, Bataille CJR, Byrne S. et al. Aminothiazolones as potent, selective and cell active inhibitors of the PIM kinase family. Bioorg Med Chem 2020; 28 (22) 115724
- 41 Sawaguchi Y, Yamazaki R, Nishiyama Y. et al. Rational design of a potent Pan-Pim kinases inhibitor with a rhodanine-benzoimidazole structure. Anticancer Res 2017; 37 (08) 4051-4057
- 42 Lee J, Park J, Hong VS. Synthesis and evaluation of 5-(3-(pyrazin-2-yl)benzylidene)thiazolidine-2,4-dione derivatives as pan-pim kinases inhibitors. Chem Pharm Bull (Tokyo) 2014; 62 (09) 906-914
- 43 Yun Y, Hong VS, Jeong S, Choo H, Kim S, Lee J. 2-Thioxothiazolidin-4-one analogs as Pan-PIM kinase inhibitors. Chem Pharm Bull (Tokyo) 2021; 69 (09) 854-861
- 44 Burger MT, Han W, Lan J. et al. Structure guided optimization, in vitro activity, and in vivo activity of Pan-PIM Kinase inhibitors. ACS Med Chem Lett 2013; 4 (12) 1193-1197
- 45 Garcia PD, Langowski JL, Wang Y. et al. Pan-PIM kinase inhibition provides a novel therapy for treating hematologic cancers. Clin Cancer Res 2014; 20 (07) 1834-1845
- 46 Burger MT, Nishiguchi G, Han W. et al. Identification of N-(4-((1R,3S,5S)-3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a potent and selective proviral insertion site of moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitor in clinical trials for hematological malignancies. J Med Chem 2015; 58 (21) 8373-8386
- 47 Nishiguchi GA, Burger MT, Han W. et al. Design, synthesis and structure activity relationship of potent pan-PIM kinase inhibitors derived from the pyridyl carboxamide scaffold. Bioorg Med Chem Lett 2016; 26 (09) 2328-2332
- 48 Koblish H, Li YL, Shin N. et al. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018; 13 (06) e0199108
- 49 Ishchenko A, Zhang L, Le Brazidec JY. et al. Structure-based design of low-nanomolar PIM kinase inhibitors. Bioorg Med Chem Lett 2015; 25 (03) 474-480
- 50 Wang X, Blackaby W, Allen V. et al. Optimization of Pan-Pim kinase activity and oral bioavailability leading to diaminopyrazole (GDC-0339) for the treatment of multiple myeloma. J Med Chem 2019; 62 (04) 2140-2153
- 51 Wang X, Magnuson S, Pastor R. et al. Discovery of novel pyrazolo[1,5-a]pyrimidines as potent pan-Pim inhibitors by structure- and property-based drug design. Bioorg Med Chem Lett 2013; 23 (11) 3149-3153
- 52 Dwyer MP, Keertikar K, Paruch K. et al. Discovery of pyrazolo[1,5-a]pyrimidine-based Pim inhibitors: a template-based approach. Bioorg Med Chem Lett 2013; 23 (22) 6178-6182
- 53 Arias-Gómez A, Godoy A, Portilla J. Functional pyrazolo[1,5-a]pyrimidines: current approaches in synthetic transformations and uses as an antitumor scaffold. Molecules 2021; 26 (09) 2708
- 54 Foulks JM, Carpenter KJ, Luo B. et al. A small-molecule inhibitor of PIM kinases as a potential treatment for urothelial carcinomas. Neoplasia 2014; 16 (05) 403-412
- 55 Nishiguchi GA, Atallah G, Bellamacina C. et al. Discovery of novel 3,5-disubstituted indole derivatives as potent inhibitors of Pim-1, Pim-2, and Pim-3 protein kinases. Bioorg Med Chem Lett 2011; 21 (21) 6366-6369
- 56 More KN, Jang HW, Hong VS, Lee J. Pim kinase inhibitory and antiproliferative activity of a novel series of meridianin C derivatives. Bioorg Med Chem Lett 2014; 24 (11) 2424-2428
- 57 More KN, Hong VS, Lee A, Park J, Kim S, Lee J. Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Bioorg Med Chem Lett 2018; 28 (14) 2513-2517
- 58 Haddach M, Michaux J, Schwaebe MK. et al. Discovery of CX-6258. A potent, selective, and orally efficacious pan-Pim kinases inhibitor. ACS Med Chem Lett 2011; 3 (02) 135-139
- 59 Wang M, Tzintzun R, Gao M, Xu Z, Zheng QH. Synthesis of [11C]CX-6258 as a new PET tracer for imaging of Pim kinases in cancer. Bioorg Med Chem Lett 2015; 25 (18) 3831-3835
- 60 Rebello RJ, Kusnadi E, Cameron DP. et al. The dual inhibition of RNA Pol I transcription and PIM kinase as a new therapeutic approach to treat advanced prostate cancer. Clin Cancer Res 2016; 22 (22) 5539-5552
- 61 Zheng J, Sha Y, Roof L. et al. Pan-PIM kinase inhibitors enhance Lenalidomide's anti-myeloma activity via cereblon-IKZF1/3 cascade. Cancer Lett 2019; 440–441: 1-10
- 62 Hu H, Wang X, Chan GK. et al. Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors. Bioorg Med Chem Lett 2015; 25 (22) 5258-5264
- 63 Wang X, Kolesnikov A, Tay S. et al. Discovery of 5-azaindazole (GNE-955) as a potent Pan-Pim inhibitor with optimized bioavailability. J Med Chem 2017; 60 (10) 4458-4473
- 64 Wang HL, Cee VJ, Chavez Jr F. et al. The discovery of novel 3-(pyrazin-2-yl)-1H-indazoles as potent pan-Pim kinase inhibitors. Bioorg Med Chem Lett 2015; 25 (04) 834-840
- 65 Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11 (41) 25228-25257
- 66 Motati DR, Amaradhi R, Ganesh T. Azaindole therapeutic agents. Bioorg Med Chem 2020; 28 (24) 115830
- 67 Barberis C, Moorcroft N, Arendt C. et al. Discovery of N-substituted 7-azaindoles as PIM1 kinase inhibitors - Part I. Bioorg Med Chem Lett 2017; 27 (20) 4730-4734
- 68 Barberis C, Moorcroft N, Pribish J. et al. Discovery of N-substituted 7-azaindoles as Pan-PIM kinase inhibitors - Lead series identification - Part II. Bioorg Med Chem Lett 2017; 27 (20) 4735-4740
- 69 Barberis C, Pribish J, Tserlin E. et al. Discovery of N-substituted 7-azaindoles as Pan-PIM kinases inhibitors - Lead optimization - Part III. Bioorg Med Chem Lett 2019; 29 (03) 491-495
- 70 Barberis C, Erdman P, Czekaj M. et al. Discovery of SARxxxx92, a pan-PIM kinase inhibitor, efficacious in a KG1 tumor model. Bioorg Med Chem Lett 2020; 30 (23) 127625
- 71 Nakano H, Saito N, Parker L. et al. Rational evolution of a novel type of potent and selective proviral integration site in Moloney murine leukemia virus kinase 1 (PIM1) inhibitor from a screening-hit compound. J Med Chem 2012; 55 (11) 5151-5164
- 72 Nakano H, Hasegawa T, Kojima H, Okabe T, Nagano T. Design and synthesis of potent and selective PIM kinase inhibitors by targeting unique structure of ATP-binding pocket. ACS Med Chem Lett 2017; 8 (05) 504-509