Semin intervent Radiol 2022; 39(03): 218-225
DOI: 10.1055/s-0042-1751292
Review Article

Lung, Pleural, and Mediastinal Biopsies: From Preprocedural Assessment to Technique and Management of Complications

Natasha Larocque
1   Department of Radiology, Hamilton General Hospital, McMaster University, Hamilton, Ontario, Canada
,
Olga R. Brook
2   Department of Radiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
› Author Affiliations

Abstract

Biopsies of the lung, pleura, and mediastinum play a crucial role in the workup of thoracic lesions. Percutaneous image-guided biopsy of thoracic lesions is a relatively safe and noninvasive way to obtain a pathologic diagnosis which is required to direct patient management. This article reviews how to safely perform image-guided biopsies of the lung, pleura, and mediastinum, from the preprocedural assessment to reviewing intraprocedural techniques, and how to avoid and manage complications.

Disclosures

The authors have no grants, disclosures, or any other conflicts of interests to declare.




Publication History

Article published online:
31 August 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 MacMahon H, Naidich DP, Goo JM. et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology 2017; 284 (01) 228-243
  • 2 Tsukada H, Satou T, Iwashima A, Souma T. Diagnostic accuracy of CT-guided automated needle biopsy of lung nodules. AJR Am J Roentgenol 2000; 175 (01) 239-243
  • 3 Priola AM, Priola SM, Cataldi A. et al. Accuracy of CT-guided transthoracic needle biopsy of lung lesions: factors affecting diagnostic yield. Radiol Med (Torino) 2007; 112 (08) 1142-1159
  • 4 de Margerie-Mellon C, de Bazelaire C, de Kerviler E. Image-guided biopsy in primary lung cancer: why, when and how. Diagn Interv Imaging 2016; 97 (10) 965-972
  • 5 Wu CC, Maher MM, Shepard JA. CT-guided percutaneous needle biopsy of the chest: preprocedural evaluation and technique. AJR Am J Roentgenol 2011; 196 (05) W511-W51 4
  • 6 Purandare NC, Kulkarni AV, Kulkarni SS. et al. 18F-FDG PET/CT-directed biopsy: does it offer incremental benefit?. Nucl Med Commun 2013; 34 (03) 203-210
  • 7 Park J, Park B, Lim JK. et al. Ultrasound-guided percutaneous needle biopsy for small pleural lesions: diagnostic yield and impact of CT and ultrasound characteristics. AJR Am J Roentgenol 2021; 217 (03) 699-706
  • 8 Petranovic M, Gilman MD, Muniappan A. et al. Diagnostic yield of CT-guided percutaneous transthoracic needle biopsy for diagnosis of anterior mediastinal masses. AJR Am J Roentgenol 2015; 205 (04) 774-779
  • 9 Patel IJ, Davidson JC, Nikolic B. et al; Standards of Practice Committee, with Cardiovascular and Interventional Radiological Society of Europe (CIRSE) Endorsement. Consensus guidelines for periprocedural management of coagulation status and hemostasis risk in percutaneous image-guided interventions. J Vasc Interv Radiol 2012; 23 (06) 727-736
  • 10 Tavare AN, Hare SS, Miller FNA, Hammond CJ, Edey A, Devaraj A. A survey of UK percutaneous lung biopsy practice: current practices in the era of early detection, oncogenetic profiling, and targeted treatments. Clin Radiol 2018; 73 (09) 800-809
  • 11 Manhire A, Charig M, Clelland C. et al; BTS. Guidelines for radiologically guided lung biopsy. Thorax 2003; 58 (11) 920-936
  • 12 Haramati LB, Austin JH. Complications after CT-guided needle biopsy through aerated versus nonaerated lung. Radiology 1991; 181 (03) 778
  • 13 Anderson CL, Crespo JC, Lie TH. Risk of pneumothorax not increased by obstructive lung disease in percutaneous needle biopsy. Chest 1994; 105 (06) 1705-1708
  • 14 Fish GD, Stanley JH, Miller KS, Schabel SI, Sutherland SE. Postbiopsy pneumothorax: estimating the risk by chest radiography and pulmonary function tests. AJR Am J Roentgenol 1988; 150 (01) 71-74
  • 15 Miller KS, Fish GB, Stanley JH, Schabel SI. Prediction of pneumothorax rate in percutaneous needle aspiration of the lung. Chest 1988; 93 (04) 742-745
  • 16 Winokur RS, Pua BB, Sullivan BW, Madoff DC. Percutaneous lung biopsy: technique, efficacy, and complications. Semin Intervent Radiol 2013; 30 (02) 121-127
  • 17 Mychajlowycz M, Alabousi A, Mironov O. Ultrasound- versus CT-guided subpleural lung and pleural biopsy: an analysis of wait times, procedure time, safety, and diagnostic adequacy. Can Assoc Radiol J 2021; 72 (04) 883-889
  • 18 Appel E, Dommaraju S, Camacho A. et al. Dependent lesion positioning at CT-guided lung biopsy to reduce risk of pneumothorax. Eur Radiol 2020; 30 (11) 6369-6375
  • 19 Huo YR, Chan MV, Habib AR, Lui I, Ridley L. Pneumothorax rates in CT-guided lung biopsies: a comprehensive systematic review and meta-analysis of risk factors. Br J Radiol 2020; 93 (1108): 20190866
  • 20 Drumm O, Joyce EA, de Blacam C. et al. CT-guided lung biopsy: effect of biopsy-side down position on pneumothorax and chest tube placement. Radiology 2019; 292 (01) 190-196
  • 21 Rozenblit AM, Tuvia J, Rozenblit GN, Klink A. CT-guided transthoracic needle biopsy using an ipsilateral dependent position. AJR Am J Roentgenol 2000; 174 (06) 1759-1764
  • 22 Kinoshita F, Kato T, Sugiura K. et al. CT-guided transthoracic needle biopsy using a puncture site-down positioning technique. AJR Am J Roentgenol 2006; 187 (04) 926-932
  • 23 Beck KS, Kim TJ, Lee KY, Kim YK, Kang JH, Han DH. CT-guided coaxial biopsy of malignant lung lesions: are cores from 20-gauge needle adequate for histologic diagnosis and molecular analysis?. J Thorac Dis 2019; 11 (03) 753-765
  • 24 Lim C, Lee KY, Kim YK, Ko JM, Han DH. CT-guided core biopsy of malignant lung lesions: how many needle passes are needed?. J Med Imaging Radiat Oncol 2013; 57 (06) 652-656
  • 25 Anderson JM, Murchison J, Patel D. CT-guided lung biopsy: factors influencing diagnostic yield and complication rate. Clin Radiol 2003; 58 (10) 791-797
  • 26 Beslic S, Zukic F, Milisic S. Percutaneous transthoracic CT guided biopsies of lung lesions; fine needle aspiration biopsy versus core biopsy. Radiol Oncol 2012; 46 (01) 19-22
  • 27 Lin CY, Chang CC, Chu CY. et al. Computed tomography-guided transthoracic needle biopsy: predictors for diagnostic failure and tissue adequacy for molecular testing. Front Med (Lausanne) 2021; 8: 650381
  • 28 Mei F, Bonifazi M, Rota M. et al. Diagnostic yield and safety of image-guided pleural biopsy: a systematic review and meta-analysis. Respiration 2021; 100 (01) 77-87
  • 29 Böcking A, Klose KC, Kyll HJ, Hauptmann S. Cytologic versus histologic evaluation of needle biopsy of the lung, hilum and mediastinum. Sensitivity, specificity and typing accuracy. Acta Cytol 1995; 39 (03) 463-471
  • 30 Chung F, Chan VW, Ong D. A post-anesthetic discharge scoring system for home readiness after ambulatory surgery. J Clin Anesth 1995; 7 (06) 500-506
  • 31 Ah-Lan KC, Nakhaei M, Camacho A. et al. Safely shortening the observation time after CT-guided lung procedures. J Am Coll Radiol 2021; 18 (08) 1118-1127
  • 32 Huo YR, Chan MV, Habib AR, Lui I, Ridley L. Post-biopsy manoeuvres to reduce pneumothorax incidence in CT-guided transthoracic lung biopsies: a systematic review and meta-analysis. Cardiovasc Intervent Radiol 2019; 42 (08) 1062-1072
  • 33 Clayton JD, Elicker BM, Ordovas KG, Kohi MP, Nguyen J, Naeger DM. Nonclotted blood patch technique reduces pneumothorax and chest tube placement rates after percutaneous lung biopsies. J Thorac Imaging 2016; 31 (04) 243-246
  • 34 Ahrar JU, Gupta S, Ensor JE. et al. Efficacy of a self-expanding tract sealant device in the reduction of pneumothorax and chest tube placement rates after percutaneous lung biopsy: a matched controlled study using propensity score analysis. Cardiovasc Intervent Radiol 2017; 40 (02) 270-276
  • 35 Bae K, Ha JY, Jeon KN. Pneumothorax after CT-guided transthoracic lung biopsy: a comparison between immediate and delayed occurrence. PLoS One 2020; 15 (08) e0238107
  • 36 Choi CM, Um SW, Yoo CG. et al. Incidence and risk factors of delayed pneumothorax after transthoracic needle biopsy of the lung. Chest 2004; 126 (05) 1516-1521
  • 37 Tam A, Singh P, Ensor JE. et al. Air travel after biopsy-related pneumothorax: is it safe to fly?. J Vasc Interv Radiol 2011; 22 (05) 595-602 .e1
  • 38 Loh SEK, Wu DDF, Venkatesh SK. et al. CT-guided thoracic biopsy: evaluating diagnostic yield and complications. Ann Acad Med Singap 2013; 42 (06) 285-290
  • 39 Cox JE, Chiles C, McManus CM, Aquino SL, Choplin RH. Transthoracic needle aspiration biopsy: variables that affect risk of pneumothorax. Radiology 1999; 212 (01) 165-168
  • 40 Tai R, Dunne RM, Trotman-Dickenson B. et al. Frequency and severity of pulmonary hemorrhage in patients undergoing percutaneous CT-guided transthoracic lung biopsy: single-institution experience of 1175 cases. Radiology 2016; 279 (01) 287-296
  • 41 Yeow KM, Su IH, Pan KT. et al. Risk factors of pneumothorax and bleeding: multivariate analysis of 660 CT-guided coaxial cutting needle lung biopsies. Chest 2004; 126 (03) 748-754
  • 42 Song YS, Park CM, Park KW. et al. Does antiplatelet therapy increase the risk of hemoptysis during percutaneous transthoracic needle biopsy of a pulmonary lesion?. AJR Am J Roentgenol 2013; 200 (05) 1014-1019
  • 43 Tomiyama N, Yasuhara Y, Nakajima Y. et al. CT-guided needle biopsy of lung lesions: a survey of severe complication based on 9783 biopsies in Japan. Eur J Radiol 2006; 59 (01) 60-64
  • 44 Lee JH, Yoon SH, Hong H, Rho JY, Goo JM. Incidence, risk factors, and prognostic indicators of symptomatic air embolism after percutaneous transthoracic lung biopsy: a systematic review and pooled analysis. Eur Radiol 2021; 31 (04) 2022-2033