Semin Plast Surg 2022; 36(02): 055-065
DOI: 10.1055/s-0042-1748916
Review Article

Israeli Innovations in the Field of Plastic Surgery

Lior Har-Shai
1   Department of Reconstructive Plastic Surgery & Burns, Rabin Medical Center – Beilinson Hospital, Petach Tikva, Israel
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
Sar-El Ofek
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
Stav Cohen
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
Keren H. Cohen
1   Department of Reconstructive Plastic Surgery & Burns, Rabin Medical Center – Beilinson Hospital, Petach Tikva, Israel
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
Dafna Shilo Yaacobi
1   Department of Reconstructive Plastic Surgery & Burns, Rabin Medical Center – Beilinson Hospital, Petach Tikva, Israel
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
Asaf Olshinka
1   Department of Reconstructive Plastic Surgery & Burns, Rabin Medical Center – Beilinson Hospital, Petach Tikva, Israel
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
,
Rami P. Dibbs
3   Division of Plastic Surgery, Texas Children's Hospital, Houston, Texas
4   Michael E. DeBakey Department of Surgery, Division of Plastic Surgery, Baylor College of Medicine. Houston, Texas
,
Dean D. Ad-El
1   Department of Reconstructive Plastic Surgery & Burns, Rabin Medical Center – Beilinson Hospital, Petach Tikva, Israel
2   Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
› Author Affiliations

Abstract

Numerous innovations within the field of plastic surgery have been developed in Israel over the last few decades. Many of these therapeutic devices and techniques have been established globally with demonstrable efficacy and respectable safety profiles. This article offers an overview of recent Israeli cutting-edge medical therapeutic solutions contributing to the global practice of plastic surgery.



Publication History

Article published online:
26 May 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Haour G. Israel, a powerhouse for networked entrepreneurship. Int J Entrep Innov Manag 2005; 5 (1–2): 39-48
  • 2 Beyar R, Zeevi B, Rechavi G. Israel: a start-up life science nation. Lancet 2017; 389 (10088): 2563-2569
  • 3 Senor D, Singer S. Start-up Nation: The Story of Israel's Economic Miracle. 1st edition. New York and Boston: Twelve; 2009
  • 4 Trajtenberg M. Innovation in Israel 1968–1997: a comparative analysis using patent data. Res Policy 2001; 30 (03) 363-389
  • 5 Yeheskel O, Shenkar O, Fiegenbaum A, Cohen E. Cooperative wealth creation: strategic alliances in Israeli Medical-Technology Ventures [and Executive Commentary] on JSTOR. Acad Manage Exec 2001; 15 (01) 16-24
  • 6 Kaplan I. The CO2 surgical laser. Photomed Laser Surg 2010; 28 (06) 847-848
  • 7 Powell LE, Andersen ES, Nigro LC, Pozez AL, Shah PA. Breast implants: a historical review with implications for diagnosis and modern surgical planning. Ann Plast Surg 2021; 87 (02) 211-221
  • 8 Orel GY, Noam C, Jacky GY. Five-year safety and satisfaction with the lightweight breast implant. Aesthet Surg J 2022; 42 (03) 261-272
  • 9 Govrin-Yehudain J, Dvir H, Preise D, Govrin-Yehudain O, Govreen-Segal D. Lightweight breast implants: a novel solution for breast augmentation and reconstruction mammaplasty. Aesthet Surg J 2015; 35 (08) 965-971
  • 10 Govrin-Yehudain O, Matanis Y, Govrin-Yehudain J. Reduced pain and accelerated recovery following primary breast augmentation with lightweight breast implants. Aesthet Surg J 2018; 38 (10) 1092-1096
  • 11 Govrin-Yehudain O, Govrin-Yehudain Y. Lightweight implants for breast augmentation and breast reconstruction surgery - an easy solution to a weighty problem. Harefuah 2020; 159 (08) 600-606
  • 12 de Bruijn HP, Johannes S. Mastopexy with 3D preshaped mesh for long-term results: development of the internal bra system. Aesthetic Plast Surg 2008; 32 (05) 757-765
  • 13 Farage MA, Miller KW, Elsner P, Maibach HI. Characteristics of the aging skin. Adv Wound Care (New Rochelle) 2013; 2 (01) 5-10
  • 14 Duarte Junior G, Duarte FC, Cervantes A. Mastopexy with an implant and the making of a horizontal flap of the upper pedicle, simulating an internal bra. Aesthetic Plast Surg 2022; 46 (01) 11-21
  • 15 Atiyeh B, Ghieh F, Chahine F, Oneisi A. Ptosis and bottoming out following mastopexy and reduction mammoplasty. is synthetic mesh internal breast support the solution? A systematic review of the literature. Aesthetic Plast Surg 2022; 46 (01) 25-34
  • 16 van Deventer PV, Graewe FR, Würinger E. Improving the longevity and results of mastopexy and breast reduction procedures: reconstructing an internal breast support system with biocompatible mesh to replace the supporting function of the ligamentous suspension. Aesthetic Plast Surg 2012; 36 (03) 578-589
  • 17 Maruccia M, Fatigato G, Elia R. et al. Microvascular coupler device versus hand-sewn venous anastomosis: a systematic review of the literature and data meta-analysis. Microsurgery 2020; 40 (05) 608-617
  • 18 Grewal AS, Erovic B, Strumas N, Enepekides DJ, Higgins KM. The utility of the microvascular anastomotic coupler in free tissue transfer. Can J Plast Surg 2012; 20 (02) 98-102
  • 19 Gundale AR, Berkovic YJ, Entezami P, Nathan CO, Chang BA. Systematic review of microvascular coupling devices for arterial anastomoses in free tissue transfer. Laryngoscope Investig Otolaryngol 2020; 5 (04) 683-688
  • 20 Guo Z, Cui W, Hu M. et al. Comparison of hand-sewn versus modified coupled arterial anastomoses in head and neck reconstruction: a single operator's experience. Int J Oral Maxillofac Surg 2020; 49 (09) 1162-1168
  • 21 Arora R, Mishra KS, Bhoye HT, Dewan AK, Singh RK, Naalla R. Mechanical anastomotic coupling device versus hand-sewn venous anastomosis in head and neck reconstruction-an analysis of 1694 venous anastomoses. Indian J Plast Surg 2021; 54 (02) 118-123
  • 22 Head LK, McKay DR. Economic comparison of hand-sutured and coupler-assisted microvascular anastomoses. J Reconstr Microsurg 2018; 34 (01) 71-76
  • 23 Hirshowitz B, Lindenbaum E, Har-Shai Y. A skin-stretching device for the harnessing of the viscoelastic properties of skin. Plast Reconstr Surg 1993; 92 (02) 260-270
  • 24 Narayanan K, Futrell JW, Bentz M, Hurwitz D. Comparative clinical study of the sure-closure device with conventional wound closure techniques. Ann Plast Surg 1995; 35 (05) 485-491
  • 25 Armstrong DG, Sorensen JC, Bushman TR. Exploiting the viscoelastic properties of pedal skin with the Sure Closure skin stretching device. J Foot Ankle Surg 1995; 34 (03) 247-253
  • 26 Caruso DM, King TJ, Tsujimura RB, Weiland DE, Schiller WR. Primary closure of fasciotomy incisions with a skin-stretching device in patients with burn and trauma. J Burn Care Rehabil 1997; 18 (02) 125-132
  • 27 Melis P, Bos KE, Horenblas S. Primary skin closure of a large groin defect after inguinal lymphadenectomy for penile cancer using a skin stretching device. J Urol 1998; 159 (01) 185-187
  • 28 Braun TL, Hamilton KL, Monson LA, Buchanan EP, Hollier Jr LH. Tissue expansion in children. Semin Plast Surg 2016; 30 (04) 155-161
  • 29 Stough DB, Spencer DM, Schauder CS. New devices for scalp reduction. Intraoperative and prolonged scalp extension. Dermatol Surg 1995; 21 (09) 777-780
  • 30 Hussmann J, Kucan JO, Zamboni WA. Elevated compartmental pressures after closure of a forearm burn wound with a skin-stretching device. Burns 1997; 23 (02) 154-156
  • 31 Futran ND. Closure of the fibula free flap donor site with the Sure-Closure skin-stretching device. Laryngoscope 1996; 106 (12 Pt 1): 1487-1490
  • 32 Barnea Y, Gur E, Amir A. et al. Delayed primary closure of fasciotomy wounds with Wisebands, a skin- and soft tissue-stretch device. Injury 2006; 37 (06) 561-566
  • 33 Barnea Y, Gur E, Amir A. et al. Our experience with Wisebands: a new skin and soft-tissue stretch device. Plast Reconstr Surg 2004; 113 (03) 862-869 , discussion 870–871
  • 34 Drossard G, Potier B, Steff M, Rousseau P, Payement G, Darsonval V. [Optimized negative pressure therapy. Case report]. Ann Chir Plast Esthet 2009; 54 (02) 165-170
  • 35 Topaz M, Carmel NN, Silberman A, Li MS, Li YZ. The TopClosure® 3S System, for skin stretching and a secure wound closure. Eur J Plast Surg 2012; 35 (07) 533-543
  • 36 Topaz M, Carmel NN, Topaz G, Li M, Li YZ. Stress-relaxation and tension relief system for immediate primary closure of large and huge soft tissue defects: an old-new concept: new concept for direct closure of large defects. Medicine (Baltimore) 2014; 93 (28) e234 DOI: 10.1097/MD.0000000000000234.
  • 37 Zhu Z, Tong Y, Wu T, Zhao Y, Yu M, Topaz M. TopClosure® tension-relief system for immediate primary abdominal defect repair in an adult patient with bladder exstrophy. J Int Med Res 2020; 48 (01) 300060519891266 DOI: 10.1177/0300060519891266.
  • 38 Topaz M, Ashkenazi I, Barzel O. et al. Minimizing treatment complexity of combat-related soft tissue injuries using a dedicated tension relief system and negative pressure therapy augmented by high-dose in situ antibiotic therapy and oxygen delivery: a retrospective study. Burns Trauma 2021; 9: b007 DOI: 10.1093/BURNST/TKAB007.
  • 39 Topaz M. Improved wound management by regulated negative pressure-assisted wound therapy and regulated, oxygen- enriched negative pressure-assisted wound therapy through basic science research and clinical assessment. Indian J Plast Surg 2012; 45 (02) 291-301
  • 40 Freund MR, Reissman P, Spira RM, Topaz M. Innovative approach to open abdomen: converting an enteroatmospheric fistula into an easily manageable stoma. BMJ Case Rep 2020; 13 (08) e234207 DOI: 10.1136/BCR-2019-234207.
  • 41 Choke A, Goh TL, Kang GCW, Tan BK. Delayed primary closure of extensive wounds using the TopClosure system and topical negative pressure therapy. J Plast Reconstr Aesthet Surg 2017; 70 (07) 968-970
  • 42 Lin DZ, Kao YC, Chen C, Wang HJ, Chiu WK. Negative pressure wound therapy for burn patients: a meta-analysis and systematic review. Int Wound J 2021; 18 (01) 112-123
  • 43 Li J, Shi JB, Hong P. et al. Combined treatment with vacuum sealing drainage, TopClosure device, and Ilizarov technique for traumatic hemipelvectomy: a rare case report of successful repairing of large-size soft tissue defects. Medicine (Baltimore) 2019; 98 (04) e14205 DOI: 10.1097/MD.0000000000014205.
  • 44 Liu Y, Tang N, Cao K. et al. Negative-pressure wound therapy promotes wound healing by enhancing angiogenesis through suppression of NLRX1 via miR-195 upregulation. Int J Low Extrem Wounds 2018; 17 (03) 144-150
  • 45 Solomonov E, Khalifa M, Rozentsvaig V, Koifman I, Biswas S, Topaz M. Case report: delayed primary wound closure after extensive abdominal wall resection for infection and malignancy using TopClosure®. Front Surg 2021; 8: 684513 DOI: 10.3389/FSURG.2021.684513.
  • 46 Zhu Z, Yang X, Zhao Y, Fan H, Yu M, Topaz M. Early surgical management of large scalp infantile hemangioma using the TopClosure® Tension-Relief System. Medicine (Baltimore) 2015; 94 (47) e2128 DOI: 10.1097/MD.0000000000002128.
  • 47 Topaz M, Gurevich M, Ashkenazi I. Simplified management of a giant forehead congenital nevus allows for early reconstruction. BMJ Case Rep 2020; 13 (07) e234164 DOI: 10.1136/BCR-2019-234164.
  • 48 Smolle C, Cambiaso-Daniel J, Forbes AA. et al. Recent trends in burn epidemiology worldwide: a systematic review. Burns 2017; 43 (02) 249-257
  • 49 Loo YL, Goh BKL, Jeffery S. An overview of the use of bromelain-based enzymatic debridement (NexoBrid®) in deep partial and full thickness burns: appraising the evidence. J Burn Care Res 2018; 39 (06) 932-938
  • 50 Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev 2006; 19 (02) 403-434
  • 51 Appelgren P, Björnhagen V, Bragderyd K, Jonsson CE, Ransjö U. A prospective study of infections in burn patients. Burns 2002; 28 (01) 39-46
  • 52 Rosenberg L, Krieger Y, Bogdanov-Berezovski A, Silberstein E, Shoham Y, Singer AJ. A novel rapid and selective enzymatic debridement agent for burn wound management: a multi-center RCT. Burns 2014; 40 (03) 466-474
  • 53 Orgill DP. Excision and skin grafting of thermal burns. N Engl J Med 2009; 360 (09) 893-901
  • 54 Arkoulis N, Mabvuure NT, Smith A, Barnes DE. Early experiences using bromelain-based enzymatic debridement in a tertiary burns centre in the United Kingdom: a retrospective case series review. J Plast Reconstr Aesthet Surg 2021; 74 (06) 1402-1407
  • 55 Hirche C, Kreken Almeland S, Dheansa B. et al. Eschar removal by bromelain based enzymatic debridement (NexoBrid®) in burns: European consensus guidelines update. Burns 2020; 46 (04) 782-796
  • 56 Di Castri A, Quarta L, Mataro I. et al. The entity of thermal-crush-avulsion hand injury (hot-press roller burns) treated with fast acting debriding enzymes (nexobrid): literature review and report of first case. Ann Burns Fire Disasters 2018; 31 (01) 31-34
  • 57 Dadras M, Wagner JM, Wallner C. et al. Enzymatic debridement of hands with deep burns: a single center experience in the treatment of 52 hands. J Plast Surg Hand Surg 2020; 54 (04) 220-224
  • 58 Bowers C, Randawa A, Sloan B, Anwar U, Phipps A, Muthayya P. Enzymatic debridement in critically injured burn patients - our experience in the intensive care setting and during burn resuscitation. Burns 2021; S0305-4179 (21)00210-2. DOI: 10.1016/J.BURNS.2021.07.023.
  • 59 Schulz A, Ribitsch B, Fuchs PC, Lipensky A, Schiefer JL. Treatment of genital burn injuries: traditional procedures and new techniques. Adv Skin Wound Care 2018; 31 (07) 314-321
  • 60 American Society of Plastic Surgeons. . Plastic Surgery Statistics Report 2020 https://www.plasticsurgery.org/documents/News/Statistics/2020/plastic-surgery-statistics-full-report-2020.pdf . Accessed April 6, 2022
  • 61 Teitelbaum SA, Burns JL, Kubota J. et al. Noninvasive body contouring by focused ultrasound: safety and efficacy of the Contour I device in a multicenter, controlled, clinical study. Plast Reconstr Surg 2007; 120 (03) 779-789
  • 62 Moreno-Moraga J, Valero-Altés T, Riquelme AM, Isarria-Marcosy MI, de la Torre JR. Body contouring by non-invasive transdermal focused ultrasound. Lasers Surg Med 2007; 39 (04) 315-323
  • 63 Brown SA, Greenbaum L, Shtukmaster S, Zadok Y, Ben-Ezra S, Kushkuley L. Characterization of nonthermal focused ultrasound for noninvasive selective fat cell disruption (lysis): technical and preclinical assessment. Plast Reconstr Surg 2009; 124 (01) 92-101
  • 64 Coleman III WP, Coleman IV W, Weiss RA, Kenkel JM, Ad-El DD, Amir R. A multicenter controlled study to evaluate multiple treatments with nonthermal focused ultrasound for noninvasive fat reduction. Dermatol Surg 2017; 43 (01) 50-57
  • 65 Hotta TA. Nonsurgical body contouring with focused ultrasound. Plast Surg Nurs 2010; 30 (02) 77-82 , quiz 83–84
  • 66 Ascher B. Safety and efficacy of UltraShape Contour I treatments to improve the appearance of body contours: multiple treatments in shorter intervals. Aesthet Surg J 2010; 30 (02) 217-224
  • 67 Wilkerson EC, Bloom BS, Goldberg DJ. Clinical study to evaluate the performance of a noninvasive focused ultrasound device for thigh fat and circumference reduction compared to control. J Cosmet Dermatol 2018; 17 (02) 157-161
  • 68 Chang JW, Koo WY, Kim EK, Lee SW, Lee JH. Facial rejuvenation using a mixture of calcium hydroxylapatite filler and hyaluronic acid filler. J Craniofac Surg 2020; 31 (01) e18-e21
  • 69 Yutskovskaya Y, Kogan E, Leshunov E. A randomized, split-face, histomorphologic study comparing a volumetric calcium hydroxylapatite and a hyaluronic acid-based dermal filler. J Drugs Dermatol 2014; 13 (09) 1047-1052 https://pubmed.ncbi.nlm.nih.gov/25226004/ Accessed April 6, 2022
  • 70 Eviatar J, Lo C, Kirszrot J. Radiesse: Advanced techniques and applications for a unique and versatile implant. Plast Reconstr Surg 2015; 136 (5, Suppl): 164-170
  • 71 Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology 2015; 61 (05) 427-434
  • 72 Cole MA, Quan T, Voorhees JJ, Fisher GJ. Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal 2018; 12 (01) 35-43
  • 73 Segal T, Schwartz A, Konfino K. Post marketing study of safety and efficacy of Crystalys, a calcium hydroxyapatite based filler for facial soft tissue augmentation. Cosmet Med 2014; 1 (16) 22-27 https://www.luminera.com/wp-content/uploads/2019/02/Post-marketing-study-Crystalys.pdf
  • 74 Boen M, Alhaddad M, Goldman MP, Kollipara R, Hoss E, Wu DCA. A randomized, evaluator-blind, split-face study evaluating the safety and efficacy of calcium hydroxylapatite for jawline augmentation. Dermatol Surg 2022; 48 (01) 76-81
  • 75 Bass LS, Smith S, Busso M, McClaren M. Calcium hydroxylapatite (Radiesse) for treatment of nasolabial folds: long-term safety and efficacy results. Aesthet Surg J 2010; 30 (02) 235-238
  • 76 Bertucci V, Solish N, Wong M, Howell M. Evaluation of the Merz Hand Grading Scale after calcium hydroxylapatite hand treatment. Dermatol Surg 2015; 41 (Suppl. 01) S389-S396
  • 77 Kauvar ANB, Gershonowitz A. Clinical and histologic evaluation of a fractional radiofrequency treatment of wrinkles and skin texture with novel 1-mm long ultra-thin electrode pins. Lasers Surg Med 2022; 54 (01) 54-61
  • 78 Knight JM. Combined 400-600nm and 800-1200nm intense pulsed phototherapy of facial acne vulgaris. J Drugs Dermatol 2019; 18 (11) 1116-1122 https://pubmed.ncbi.nlm.nih.gov/31741354/ Accessed April 6, 2022
  • 79 Hultman CS, Friedstat JS, Edkins RE. Efficacy of intense pulsed light for the treatment of burn scar dyschromias: a pilot study to assess patient satisfaction, safety, and willingness to pay. Ann Plast Surg 2015; 74 (Suppl. 04) S204-S208
  • 80 Ullmann Y, Elkhatib R, Fodor L. The aesthetic applications of intense pulsed light using the Lumenis M-22 device. Laser Ther 2011; 20 (01) 23-28
  • 81 Hruza G, Taub AF, Collier SL, Mulholland SR. Skin rejuvenation and wrinkle reduction using a fractional radiofrequency system. J Drugs Dermatol 2009; 8 (03) 259-265 https://pubmed.ncbi.nlm.nih.gov/19271373/ Accessed April 6, 2022
  • 82 Hantash BM, Ubeid AA, Chang H, Kafi R, Renton B. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg Med 2009; 41 (01) 1-9
  • 83 Zheng Z, Goo B, Kim DY, Kang JS, Cho SB. Histometric analysis of skin-radiofrequency interaction using a fractionated microneedle delivery system. Dermatol Surg 2014; 40 (02) 134-141
  • 84 Verner I. Clinical evaluation of the efficacy and safety of fractional bipolar radiofrequency for the treatment of moderate to severe acne scars. Dermatol Ther (Heidelb) 2016; 29 (01) 24-27
  • 85 Kaminaka C, Furukawa F, Yamamoto Y. Long-term clinical and histological effects of a bipolar fractional radiofrequency system in the treatment of facial atrophic acne scars and acne vulgaris in Japanese patients: a series of eight cases. Photomed Laser Surg 2016; 34 (12) 657-660
  • 86 Ong MWS, Bashir SJ. Fractional laser resurfacing for acne scars: a review. Br J Dermatol 2012; 166 (06) 1160-1169
  • 87 Kaminaka C, Uede M, Matsunaka H, Furukawa F, Yamamoto Y. Clinical studies of the treatment of facial atrophic acne scars and acne with a bipolar fractional radiofrequency system. J Dermatol 2015; 42 (06) 580-587
  • 88 Prieto VG, Zhang PS, Sadick NS. Evaluation of pulsed light and radiofrequency combined for the treatment of acne vulgaris with histologic analysis of facial skin biopsies. J Cosmet Laser Ther 2005; 7 (02) 63-68
  • 89 White GM. Recent findings in the epidemiologic evidence, classification, and subtypes of acne vulgaris. J Am Acad Dermatol 1998; 39 (2 Pt 3): S34-S37
  • 90 Sadick NS, Alexiades-Armenakas M, Bitter Jr P, Hruza G, Mulholland RS. Enhanced full-face skin rejuvenation using synchronous intense pulsed optical and conducted bipolar radiofrequency energy (ELOS): introducing selective radiophotothermolysis. J Drugs Dermatol 2005; 4 (02) 181-186 https://pubmed.ncbi.nlm.nih.gov/15776775/ Accessed April 6, 2022
  • 91 Man J, Goldberg DJ. Safety and efficacy of fractional bipolar radiofrequency treatment in Fitzpatrick skin types V-VI. J Cosmet Laser Ther 2012; 14 (04) 179-183
  • 92 Har-Shai Y, Brown W, Labbé D. et al. Intralesional cryosurgery for the treatment of hypertrophic scars and keloids following aesthetic surgery: the results of a prospective observational study. Int J Low Extrem Wounds 2008; 7 (03) 169-175
  • 93 Defty C, Cubitt JJ, Murison MS. Can intralesional cryotherapy reshape the management of difficult keloid scars?. Scars Burn Heal 2016; 2: 2059513116678643 DOI: 10.1177/2059513116678643.
  • 94 Har-Shai Y, Amar M, Sabo E. Intralesional cryotherapy for enhancing the involution of hypertrophic scars and keloids. Plast Reconstr Surg 2003; 111 (06) 1841-1852
  • 95 van Leeuwen MCE, van der Wal MBA, Bulstra AJ. et al. Intralesional cryotherapy for treatment of keloid scars: a prospective study. Plast Reconstr Surg 2015; 135 (02) 580-589
  • 96 Weshahy AH. Intralesional cryosurgery. A new technique using cryoneedles. J Dermatol Surg Oncol 1993; 19 (02) 123-126
  • 97 Zouboulis CC. Principles of cutaneous cryosurgery: an update. Dermatology 1999; 198 (02) 111-117
  • 98 Gupta S, Kumar B. Intralesional cryosurgery using lumbar puncture and/or hypodermic needles for large, bulky, recalcitrant keloids. Int J Dermatol 2001; 40 (05) 349-353
  • 99 Har-Shai Y, Sabo E, Rohde E, Hyams M, Assaf C, Zouboulis CC. Intralesional cryosurgery enhances the involution of recalcitrant auricular keloids: a new clinical approach supported by experimental studies. Wound Repair Regen 2006; 14 (01) 18-27
  • 100 O'Boyle CP, Shayan-Arani H, Hamada MW. Intralesional cryotherapy for hypertrophic scars and keloids: a review. Scars Burn Heal 2017; 3: 2059513117702162 DOI: 10.1177/2059513117702162.
  • 101 Chopinaud M, Pham AD, Labbé D. et al. Intralesional cryosurgery to treat keloid scars: results from a retrospective study. Dermatology 2014; 229 (03) 263-270