Vet Comp Orthop Traumatol 2022; 35(05): 279-288
DOI: 10.1055/s-0042-1748876
Original Research

Performing a Three-Dimensional Finite Element Analysis to Simulate and Quantify the Contact Pressure in the Canine Elbow Joint: A Pilot Study

Michaela Rhode
1   Clinic for Small Animal Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Oliver Harms
1   Clinic for Small Animal Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Yannick Finck
2   EDAG Engineering GmbH, Ingolstadt, Germany
,
Philipp Dautzenberg
1   Clinic for Small Animal Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Julia Schweizer
3   Veterinary Practice for Small Animal Surgery, Neuenrade, Germany
,
Matthias Lüpke
4   Institute for General Radiology and Medical Physics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Fritjof Freise
5   Institute for Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
,
Michael Fehr
6   Clinic for Small Mammals, Reptiles and Birds, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
› Author Affiliations

Abstract

Objective The aim of this study was to measure surface pressures and force distribution on radius and ulna in healthy and dysplastic elbow joints in different positions using the finite element analysis (FEA).

Study Design FEA was performed on computed tomographic data of healthy and fragmented coronoid process diseased elbow joints of Labrador Retrievers. It considered the articular cartilage, collateral ligaments, triceps and biceps muscle. The analysis of each joint was performed in four positions (standing position: 145 degrees and three positions of the stance phase of gait: beginning: 115 degrees, middle: 110 degrees, end: 145 degrees joint angle) in consideration of different ground reaction forces (standing: 88.3 N; stance phase of gait: 182.5 N).

Results Mean values of total force of 317.5 N (standing), 590.7 N (beginning), 330.9 N (middle) and 730.9 N (end) were measured. The percentual force distribution resulted in a total of 49.56 ± 26.58% on the ulna with a very inhomogeneous distribution. A significant difference was detected between the positions ‘standing’ and ‘end’ (p = 0.0497) regardless of the joint condition. In some FEA results, visual assessment of the surface pressures indicated an increase in pressure in the region of the medial compartment without a uniform pattern. An increase in pressure resulted in an area increase in the pressure marks on the joint surface and measurable pressure was increased at a larger joint angle.

Clinical Significance FEA can provide information about the transmission of force in the joint. Prior to the use of FEA in scientific clinical research for the simulation of force, further model improvements are necessary.

Authors' Contributions

The conception of the study and the study design were done by M.R., M.F., O.H., and Y.F. The model construction was carried out by M.R., Y.F., P.D., J.S. under the supervision of O.H. The finite element analysis calculations were done by Y.F. and M.R. Data collection was done by M.R. The analysis was performed by M.R. with the assistance of M.L. and F.F.; and lastly, O.H. and M.F. supervised model construction, analysis and manuscript editing. All authors read and approved the final manuscript.


Supplementary Material



Publication History

Received: 10 February 2021

Accepted: 04 February 2022

Article published online:
04 July 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Groendalen J. Arthrosis in the elbow joint of young rapidly growing dogs, 6: Interrelation between clinical, radiographical and patho-anatomical findings. [arthrosis, osteochondrosis, lameness]. Article Nordisk Veterinaermedicin (Denmark) 1982; 34 (03) 65-75
  • 2 Olsson SE. The early diagnosis of fragmented coronoid process and osteochondritis dissecans of the canine elbow joint. J Am Animal Hosp Assoc) 1983; 19 (05) 616-626
  • 3 Kirberger RM, Fourie SL. Elbow dysplasia in the dog: pathophysiology, diagnosis and control. J S Afr Vet Assoc 1998; 69 (02) 43-54
  • 4 Fitzpatrick N, Smith TJ, Evans RB, Yeadon R. Radiographic and arthroscopic findings in the elbow joints of 263 dogs with medial coronoid disease. Vet Surg 2009; 38 (02) 213-223
  • 5 Coppieters E, Seghers H, Verhoeven G. et al. Arthroscopic, computed tomography, and radiographic findings in 25 dogs with lameness after arthroscopic treatment of medial coronoid disease. Vet Surg 2016; 45 (02) 246-253
  • 6 Temwichitr J, Leegwater PAJ, Hazewinkel HAW. Fragmented coronoid process in the dog: a heritable disease. Vet J 2010; 185 (02) 123-129
  • 7 Vermote KAG, Bergenhuyzen ALR, Gielen I, van Bree H, Duchateau L, Van Ryssen B. Elbow lameness in dogs of six years and older: arthroscopic and imaging findings of medial coronoid disease in 51 dogs. Vet Comp Orthop Traumatol 2010; 23 (01) 43-50
  • 8 Farrell M, Heller J, Solano M, Fitzpatrick N, Sparrow T, Kowaleski M. Does radiographic arthrosis correlate with cartilage pathology in Labrador Retrievers affected by medial coronoid process disease?. Vet Surg 2014; 43 (02) 155-165
  • 9 Wind AP. Elbow incongruity and developmental elbow diseases in the dog: Part I. J Am Anim Hosp Assoc 1986; 22 (06) 711-724
  • 10 Wind AP, Packard M. Elbow incongruity and developmental elbow diseases in the dog: part II. J Am Anim Hosp Assoc 1986; 22: 725-730
  • 11 Eljack H, Böttcher P. Relationship between axial radioulnar incongruence with cartilage damage in dogs with medial coronoid disease. Vet Surg 2015; 44 (02) 174-179
  • 12 Rohwedder T, Fischer M, Böttcher P. In vivo fluoroscopic kinematography of dynamic radio-ulnar incongruence in dogs. Open Vet J 2017; 7 (03) 221-228
  • 13 Guillou R, Déjardin L, Bey M, McDonald C. Three dimensional kinematics of the normal canine elbow at the walk and trot. Vet Surg 2011;40(07):
  • 14 Griffon DJ, Mostafa AA, Blond L, Schaeffer DJ. Radiographic, computed tomographic, and arthroscopic diagnosis of radioulnar incongruence in dogs with medial coronoid disease. Vet Surg 2018; 47 (03) 333-342
  • 15 Samoy Y, Gielen I, Saunders J, van Bree H, Van Ryssen B. Sensitivity and specificity of radiography for detection of elbow incongruity in clinical patients. Vet Radiol Ultrasound 2012; 53 (03) 236-244
  • 16 Alves-Pimenta S, Ginja MM, Colaço B. Role of elbow incongruity in canine elbow dysplasia: advances in diagnostics and biomechanics. Vet Comp Orthop Traumatol 2019; 32 (02) 87-96
  • 17 Tellhelm B. Grading primary ED-lesions and elbow osteoarthrosis according to the IEWG protocol. 2011 14.
  • 18 Lau SF, Theyse LFH, Voorhout G, Hazewinkel HAW. Radiographic, computed tomographic, and arthroscopic findings in labrador retrievers with medial coronoid disease. Vet Surg 2015; 44 (04) 511-520
  • 19 Schulz KS, Holsworth IG, Hornof WJ. Self-retaining braces for canine arthroscopy. Vet Surg 2004; 33 (01) 77-82
  • 20 Fitzpatrick N, Smith TJ, Evans RB, O'Riordan J, Yeadon R. Subtotal coronoid ostectomy for treatment of medial coronoid disease in 263 dogs. Vet Surg 2009; 38 (02) 233-245
  • 21 Werner H, Winkels P, Grevel V, Oechtering G, Böttcher P. Sensitivity and specificity of arthroscopic estimation of positive and negative radio-ulnar incongruence in dogs. An in vitro study. Vet Comp Orthop Traumatol 2009; 22 (06) 437-441
  • 22 Claessen FMAP, Kachooei AR, Kolovich GP. et al. Portal placement in elbow arthroscopy by novice surgeons: cadaver study. Knee Surg Sports Traumatol Arthrosc 2017; 25 (07) 2247-2254
  • 23 Wucherer KL, Ober CP, Conzemius MG. The use of delayed gadolinium enhanced magnetic resonance imaging of cartilage and T2 mapping to evaluate articular cartilage in the normal canine elbow. Vet Radiol Ultrasound 2012; 53 (01) 57-63
  • 24 Dankert J. Die Methode der finiten Elemente. Numerische Methoden der Mechanik: Festigkeits- und Schwingungsberechnung mittels elektronischer Rechentechnik. Springer Vienna; 1977: 128-238
  • 25 Polikeit A, Ferguson SJ, Schawalder P. Ellbogendysplasie beim Hund: Finite-Elemente-Analyse. article in journal/newspaper. Biomed Tech 2007; 52 (04) 308-314
  • 26 Merz BR. Finite Elemente-Analyse von exzidierten Femora basierend auf der quantitativen Computer Tomographie [dissertation]. ETH Zurich; 1993
  • 27 Tarniţă D, Boborelu C, Popa D, Tarniţă C, Rusu L. The three-dimensional modeling of the complex virtual human elbow joint. Romanian journal of morphology and embryology. Rev Roum Morphol Embryol 2010; 51: 489-495
  • 28 Willing RT, Lalone EA, Shannon H, Johnson JA, King GJ. Validation of a Finite Element Model of the Human Elbow for Determining Cartilage Contact Mechanics. Amsterdam: Elsevier Science B.V.; 2013: 1767
  • 29 Rahman M, Cil A, Stylianou AP. Prediction of elbow joint contact mechanics in the multibody framework. Med Eng Phys 2016; 38 (03) 257-266
  • 30 Renani MS, Rahman M, Cil A, Stylianou AP. Ulna-humerus contact mechanics: finite element analysis and experimental measurements using a tactile pressure sensor. Med Eng Phys 2017; 50: 22-28
  • 31 Wagner K, Griffon DJ, Thomas MW. et al. Radiographic, computed tomographic, and arthroscopic evaluation of experimental radio-ulnar incongruence in the dog. Vet Surg 2007; 36 (07) 691-698
  • 32 Rauschert T. Metrische Untersuchungen an den Gelenken und Muskel der Schultergliedmaße bei zwei Hunderassen - ein Vergleich zwsichen Dackel (Teckel, Dachshund) und dem Deutschen Schäferhund (Metric investigations of the joints and muscles of the shoulder limb in two breeds of dog - a comparison between Sausage Dog (Dachshund) and the German Shepherd Dog) [dissertation]. Veterinärmedizinische Fakultät, Ludwig-Maximilians-Universität München;; 1986
  • 33 Angle T, Gillette R, Weimar W. Kinematic analysis of maximal movement initiation in Greyhounds. Aust Vet J 2012; 90 (03) 60-68
  • 34 Lott D, Loeffler K, Kleine-Kuhlmann R. Measurement of joint angles in the limbs of dogs. II. German Shepherd and Boxer dogs. / Bestimmung der Gelenkwinkel an den Gliedmassen von Hunden. 2. Mitteilung: Gelenkwinkel bei Deutschen Schäferhunden und Boxern. Kleintierpraxis 1990; 35 (04) 173-176
  • 35 Mai M. Funktionell-anatomische Untersuchungen an den Articulationes membri thoracici von Deutschem Schäferhund, Dobermann, Deutscher Dogge, Rauhaar- und Langhaar-Dachshund (Functional-anatomical studies on the articulationes membri thoracici of German Shepherd, Doberman, Great Dane, Rough-haired and Long-haired Dachshund) [dissertation]. Veterinärmedizinsche Fakultät, Ludwig-Maximilians-Universität München;; 1995
  • 36 Millis DL, Levine D. Canine Rehabilitation and Physical Therapy. Second edition Elsevier. Saunders; 2014
  • 37 Kim J, Kazmierczak KA, Breur GJ. Comparison of temporospatial and kinetic variables of walking in small and large dogs on a pressure-sensing walkway. Am J Vet Res 2011; 72 (09) 1171-1177
  • 38 Fischer MS, Lilje KE. Propulsion function during locomotion. In: Fischer MS, Lilje KE, Lauströer J, eds. Dogs in motion. 2. Auflage ed. Kosmos; 2012: 48-57
  • 39 Winhard F. Anatomische und computertomographische Untersuchungen am gesunden und degenerativ veränderten Schulter- und Ellbogengelenk des Hundes (Canis familiaris) (Anatomical and computer tomographic examinations of the healthy and degeneratively altered shoulder and elbow joints of the dog (Canis familiaris)) [dissertation]. Veterinärmedizinische Fakultät, Ludwig-Maximilians-Universität München; 2007
  • 40 Goldhammer MA, Smith SH, Fitzpatrick N, Clements DN. A comparison of radiographic, arthroscopic and histological measures of articular pathology in the canine elbow joint. Vet J 2010; 186 (01) 96-103
  • 41 Mikihiko T. Electromyographic and Joint-Mechanical Studies in Quadrupedal Locomotion. Walk I.. Nippon Juigaku Zasshi 1973; 35 (05) 433
  • 42 Goslow Jr GE, Seeherman HJ, Taylor CR, McCutchin MN, Heglund NC. Electrical activity and relative length changes of dog limb muscles as a function of speed and gait. J Exp Biol 1981; 94 (01) 15-42
  • 43 Carrier DR, Deban SM, Fischbein T. Locomotor function of forelimb protractor and retractor muscles of dogs: evidence of strut-like behavior at the shoulder. J Exp Biol 2008; 211 (Pt 1): 150-162
  • 44 Wohl GR, Shymkiw RC, Matyas JR, Kloiber R, Zernicke RF. Periarticular cancellous bone changes following anterior cruciate ligament injury. J Appl Physiol (1985) 2001; 91 (01) 336-342
  • 45 Torzilli PA, Takebe K, Burstein AH, Heiple KG. Structural properties of immature canine bone. J Biomech Eng 1981; 103 (04) 232-238
  • 46 Blichmann B. Materialeigenschaften der Knochen vor dem Hintergrund der biologischen Evolution (Material properties of bones against the background of biological evolution) [dissertation]. Medizinische Fakultät Charité - Universitätsmedizin Berlin; 2009
  • 47 Kumar K, Mogha IV, Aithal HP. et al. Determinants of bone mass, density and growth in growing dogs with normal and osteopenic bones. Vet Res Commun 2009; 33 (01) 57-66
  • 48 Eckstein F, Jacobs CR, Merz BR. Mechanobiological adaptation of subchondral bone as a function of joint incongruity and loading. Med Eng Phys 1997; 19 (08) 720-728
  • 49 van Turnhout MC, Schipper H, van Lagen B, Zuilhof H, Kranenbarg S, van Leeuwen JL. Postnatal development of depth-dependent collagen density in ovine articular cartilage. BMC Dev Biol 2010; 10: 108
  • 50 Dreymann B. Histologische und biomechanische Untersuchung der Transplantateinheilung nach Ersatz des vorderen Kreuzbands beim juvenilen Schaf (Histological and biomechanical investigation of the graft healing after replacement of the anterior cruciate ligament in juvenile sheep) [dissertation]. Tierärztliche Hochschule Hannover; 2007
  • 51 Böhme B, d'Otreppe V, Ponthot JP, Balligand M. Intraosseous stress distribution and bone interaction during load application across the canine elbow joint: a preliminary finite element analysis for determination of condylar fracture pathogenesis in immature and mature dogs. Res Vet Sci 2016; 106: 143-148
  • 52 Milz S, Eckstein F, Putz R. The thickness of the subchondral plate and its correlation with the thickness of the uncalcified articular cartilage in the human patella. Anat Embryol (Berl) 1995; 192 (05) 437-444
  • 53 Probst A, Modler F, Künzel W, Mlynarik V, Trattnig S. Demonstration of the articular cartilage of the canine ulnar trochlear notch using high-field magnetic resonance imaging. Vet J 2008; 177 (01) 63-70
  • 54 Rohwedder T, Fischer M, Böttcher P. In vivo axial humero-ulnar rotation in normal and dysplastic canine elbow joints. Tierarztl Prax Ausg K Klientiere Heimtiere 2018; 46 (02) 83-89 Axiale humeroulnare Rotation in gesunden und dysplastischen Ellbogengelenken des Hundes in vivo.
  • 55 Trostel CT, McLaughlin RM, Pool RR. Canine lameness caused by developmental orthopedic diseases: fragmented medial coronoid process and ununited anconeal process. Compend Contin Educ Pract Vet 2003; 25 (02) 112-121
  • 56 Tokuriki M. Electromyographic and joint-mechanical studies in quadrupedal locomotion. II. Trot. Nippon Juigaku Zasshi 1973; 35 (06) 525-533
  • 57 Mikihiko T. Electromyographic and joint-mechanical studies in quadrupedal locomotion: III. Gallop. Nippon Juigaku Zasshi 1974; 36 (02) 121
  • 58 Carrier DR, Deban SM, Fischbein T. Locomotor function of the pectoral girdle ‘muscular sling’ in trotting dogs. J Exp Biol 2006; 209 (Pt 11): 2224-2237
  • 59 Lee DV, Bertram JE, Todhunter RJ. Acceleration and balance in trotting dogs. J Exp Biol 1999; 202 (Pt 24): 3565-3573
  • 60 Krotscheck U, Böttcher P. Surgical diseases of the elbow. In: Johnston SA, Tobias K, eds. Veterinary Surgery: Small Animal. Second edition. Elsevier; St. Louis, Missouri; 2017: 836-885 :chap 52.
  • 61 House MR, Marino DJ, Lesser ML. Effect of limb position on elbow congruity with CT evaluation. Vet Surg 2009; 38 (02) 154-160
  • 62 Mason DR, Schulz KS, Fujita Y, Kass PH, Stover SM. Measurement of humeroradial and humeroulnar transarticular joint forces in the canine elbow joint after humeral wedge and humeral slide osteotomies. Vet Surg 2008; 37 (01) 63-70
  • 63 Krotscheck U, Kalafut S, Meloni G. et al. Effect of ulnar ostectomy on intra-articular pressure mapping and contact mechanics of the congruent and incongruent canine elbow ex vivo. Vet Surg 2014; 43 (03) 339-346
  • 64 Cuddy LC, Lewis DD, Kim SE. et al. Ex vivo contact mechanics and three-dimensional alignment of normal dog elbows after proximal ulnar rotational osteotomy. Vet Surg 2012; 41 (08) 905-914
  • 65 McConkey MJ, Valenzano DM, Wei A. et al. Effect of the proximal abducting ulnar osteotomy on intra-articular pressure distribution and contact mechanics of congruent and incongruent canine elbows ex vivo. Vet Surg 2016; 45 (03) 347-355
  • 66 Maierl J. Zur funktionellen Anatomie und Biomechanik des Ellbogengelenks (Articulatio cubiti) des Hundes (Canis familiaris) (About the functional anatomy and biomechanics of the elbow joint (Articulatio cubiti) of the dog (Canis familiaris)) [habilitation thesis]. Veterinärmedizinische Fakultät, Ludwig-Maximilians-Universität München; 2003
  • 67 Mason DR, Schulz KS, Fujita Y, Kass PH, Stover SM. In vitro force mapping of normal canine humeroradial and humeroulnar joints. Am J Vet Res 2005; 66 (01) 132-135
  • 68 Fischer MS, Lilje KE. Skeleton of the dog. In: Fischer MS, Lilje KE, Lauströer J. eds. Dogs in motion. 2. Auflage ed.. Kosmos; 2012: 58-79
  • 69 Morgan JP, Wind A, Davidson AP. Bone dysplasias in the labrador retriever: a radiographic study. Article J Am Anim Hosp Assoc 1999; 35 (04) 332-340
  • 70 Barthélémy NP, Griffon DJ, Ragetly GR, Carrera I, Schaeffer DJ. Short- and long-term outcomes after arthroscopic treatment of young large breed dogs with medial compartment disease of the elbow. Vet Surg 2014; 43 (08) 935-943
  • 71 Dempsey LM, Maddox TW, Comerford EJ, Pettitt RA, Tomlinson AW. A comparison of owner-assessed long-term outcome of arthroscopic intervention versus conservative management of dogs with medial coronoid process disease. Vet Comp Orthop Traumatol 2019; 32 (01) 1-9
  • 72 Rohwedder T, Rebentrost P, Böttcher P. Three-dimensional joint kinematics in a canine elbow joint with medial coronoid disease before and after bi-oblique dynamic proximal ulnar osteotomy. VCOT Open 2019; 2 (02) 44-49
  • 73 Böttcher P, Bräuer S, Werner H. Estimation of joint incongruence in dysplastic canine elbows before and after dynamic proximal ulnar osteotomy. Vet Surg 2013; 42 (04) 371-376
  • 74 Burton NJ, Meakin L, Hosworth A, Parsons KJ. Reliability of CT measurement of induced radioulnar step in dogs using a circle superimposition technique. J Small Anim Pract 2018; 59 (02) 92-97