Semin Reprod Med 2022; 40(01/02): 053-068
DOI: 10.1055/s-0042-1744495
Review Article

The Interaction of Obesity and Reproductive Function in Adolescents

Victoria Elliott*
1   Division of Pediatric Endocrinology, Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
,
Stephanie W. Waldrop*
2   Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
,
Pattara Wiromrat
3   Division of Endocrinology, Department of Pediatrics, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
,
Anne-Marie Carreau
4   Endocrinologue, Centre de Recherche du CHU de Québec-Université Laval, Québec, Canada
5   Endocrinologie–Néphrologie, Québec-Université Laval, Québec, Canada
,
2   Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado
6   Center for Women's Health Research, University of Colorado Anschutz Medical Campus, Aurora, Colorado
› Author Affiliations
Funding None.

Abstract

Obesity is increasing worldwide, including in pediatrics. Adequate nutrition is required for initiation of menses, and there is a clear secular trend toward earlier pubertal onset and menarche in females in countries around the globe. Similar findings of earlier pubertal start are suggested in males. However, as individuals and populations have crossed into over-nutritional states including overweight and obesity, the effect of excess weight on disrupting reproductive function has become apparent. Hypothalamic hypogonadism and polycystic ovary syndrome are two conditions where reproductive function appears to directly relate to excess weight. Clinical findings in individuals with certain polygenic and monogenic obesity syndromes, which also have reproductive disruptions, have helped elucidate neurologic pathways that are common to both. Clinical endocrinopathies such as hypothyroidism or panhypopituitarism also aide in the understanding of the role of the endocrine system in weight gain. Understanding the intersection of obesity and reproductive function may lead to future therapies which can treat both conditions.

Disclosures

M.C-G. has served on a pediatric obesity advisory board for Novo Nordisk.


* Joint first authors.




Publication History

Article published online:
13 May 2022

© 2021. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Di Cesare M, Sorić M, Bovet P. et al. The epidemiological burden of obesity in childhood: a worldwide epidemic requiring urgent action. BMC Med 2019; 17 (01) 212
  • 2 World Health Organization. Overweight and Obesity - Fact Sheet. Published April 2020. Accessed February 15, 2022 at: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  • 3 Wang Y, Lim H. The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int Rev Psychiatry 2012; 24 (03) 176-188
  • 4 Sarafoglou K, Hoffmann GF, Roth KS. Pediatric Endocrinology and Inborn Errors of Metabolism. 2nd ed.. New York: McGraw-Hill Education; 2017
  • 5 Thomas F, Renaud F, Benefice E, de Meeüs T, Guegan JF. International variability of ages at menarche and menopause: patterns and main determinants. Hum Biol 2001; 73 (02) 271-290
  • 6 Chumlea WC, Schubert CM, Roche AF. et al. Age at menarche and racial comparisons in US girls. Pediatrics 2003; 111 (01) 110-113
  • 7 Seppä S, Kuiri-Hänninen T, Holopainen E, Voutilainen R. Management of endocrine disease: diagnosis and management of primary amenorrhea and female delayed puberty. Eur J Endocrinol 2021; 184 (06) R225-R242
  • 8 Rosenfield RL. The diagnosis of polycystic ovary syndrome in adolescents. Pediatrics 2015; 136 (06) 1154-1165
  • 9 Rosenfield RL. Clinical review: adolescent anovulation: maturational mechanisms and implications. J Clin Endocrinol Metab 2013; 98 (09) 3572-3583
  • 10 Juul A, Teilmann G, Scheike T. et al. Pubertal development in Danish children: comparison of recent European and US data. Int J Androl 2006; 29 (01) 247-255 , discussion 286–290
  • 11 Herman-Giddens ME, Steffes J, Harris D. et al. Secondary sexual characteristics in boys: data from the Pediatric Research in Office Settings Network. Pediatrics 2012; 130 (05) e1058-e1068
  • 12 Biro FM, Lucky AW, Huster GA, Morrison JA. Pubertal staging in boys. J Pediatr 1995; 127 (01) 100-102
  • 13 Lee JM, Wasserman R, Kaciroti N. et al. Timing of puberty in overweight versus obese boys. Pediatrics 2016; 137 (02) e20150164
  • 14 Ohlsson C, Bygdell M, Celind J. et al. Secular trends in pubertal growth acceleration in Swedish boys born from 1947 to 1996. JAMA Pediatr 2019; 173 (09) 860-865
  • 15 Cousminer DL, Widén E, Palmert MR. The genetics of pubertal timing in the general population: recent advances and evidence for sex-specificity. Curr Opin Endocrinol Diabetes Obes 2016; 23 (01) 57-65
  • 16 Aksglaede L, Sørensen K, Petersen JH, Skakkebaek NE, Juul A. Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 2009; 123 (05) e932-e939
  • 17 De Leonibus C, Marcovecchio ML, Chiavaroli V, de Giorgis T, Chiarelli F, Mohn A. Timing of puberty and physical growth in obese children: a longitudinal study in boys and girls. Pediatr Obes 2014; 9 (04) 292-299
  • 18 Kaplowitz PB, Slora EJ, Wasserman RC, Pedlow SE, Herman-Giddens ME. Earlier onset of puberty in girls: relation to increased body mass index and race. Pediatrics 2001; 108 (02) 347-353
  • 19 Rosenfield RL, Lipton RB, Drum ML. Thelarche, pubarche, and menarche attainment in children with normal and elevated body mass index. Pediatrics 2009; 123 (01) 84-88
  • 20 Lian Q, Mao Y, Luo S. et al. Puberty timing associated with obesity and central obesity in Chinese Han girls. BMC Pediatr 2019; 19 (01) 1
  • 21 Barcellos Gemelli IF, Farias EDS, Souza OF. Age at menarche and its association with excess weight and body fat percentage in girls in the southwestern region of the Brazilian Amazon. J Pediatr Adolesc Gynecol 2016; 29 (05) 482-488
  • 22 Eckert-Lind C, Busch AS, Petersen JH. et al. Worldwide secular trends in age at pubertal onset assessed by breast development among girls: a systematic review and meta-analysis. JAMA Pediatr 2020; 174 (04) e195881
  • 23 Freedman DS, Khan LK, Serdula MK, Dietz WH, Srinivasan SR, Berenson GS. Relation of age at menarche to race, time period, and anthropometric dimensions: the Bogalusa Heart Study. Pediatrics 2002; 110 (04) e43
  • 24 Pereira A, Busch AS, Solares F, Baier I, Corvalan C, Mericq V. Total and central adiposity are associated with age at gonadarche and incidence of precocious gonadarche in boys. J Clin Endocrinol Metab 2021; 106 (05) 1352-1361
  • 25 Juul A, Magnusdottir S, Scheike T, Prytz S, Skakkebaek NE. Age at voice break in Danish boys: effects of pre-pubertal body mass index and secular trend. Int J Androl 2007; 30 (06) 537-542
  • 26 Monteilh C, Kieszak S, Flanders WD. et al. Timing of maturation and predictors of Tanner stage transitions in boys enrolled in a contemporary British cohort. Paediatr Perinat Epidemiol 2011; 25 (01) 75-87
  • 27 Ong KK, Bann D, Wills AK. et al; National Survey of Health and Development Scientific and Data Collection Team. Timing of voice breaking in males associated with growth and weight gain across the life course. J Clin Endocrinol Metab 2012; 97 (08) 2844-2852
  • 28 Wang Y. Is obesity associated with early sexual maturation? A comparison of the association in American boys versus girls. Pediatrics 2002; 110 (05) 903-910
  • 29 Roa J, Herbison AE. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice. Endocrinology 2012; 153 (11) 5587-5599
  • 30 Vollbach H, Brandt S, Lahr G. et al. Prevalence and phenotypic characterization of MC4R variants in a large pediatric cohort. Int J Obes 2017; 41 (01) 13-22
  • 31 Reinehr T, Roth CL. Is there a causal relationship between obesity and puberty?. Lancet Child Adolesc Health 2019; 3 (01) 44-54
  • 32 Risselada AJ, Mulder H, Heerdink ER, Egberts TC. Pharmacogenetic testing to predict antipsychotic-induced weight gain: a systematic review. Pharmacogenomics 2011; 12 (08) 1213-1227
  • 33 Han JC, Lawlor DA, Kimm SY. Childhood obesity. Lancet 2010; 375 (9727): 1737-1748
  • 34 Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat Rev Genet 2005; 6 (03) 221-234
  • 35 Rak A, Mellouk N, Froment P, Dupont J. Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction 2017; 153 (06) R215-R226
  • 36 Roth CL, Enriori PJ, Harz K, Woelfle J, Cowley MA, Reinehr T. Peptide YY is a regulator of energy homeostasis in obese children before and after weight loss. J Clin Endocrinol Metab 2005; 90 (12) 6386-6391
  • 37 Álvarez-Castro P, Pena L, Cordido F. Ghrelin in obesity, physiological and pharmacological considerations. Mini Rev Med Chem 2013; 13 (04) 541-552
  • 38 Elias CF. Leptin action in pubertal development: recent advances and unanswered questions. Trends Endocrinol Metab 2012; 23 (01) 9-15
  • 39 Vazquez MJ, Velasco I, Tena-Sempere M. Novel mechanisms for the metabolic control of puberty: implications for pubertal alterations in early-onset obesity and malnutrition. J Endocrinol 2019; 242 (02) R51-R65
  • 40 Hill JW, Elias CF. Neuroanatomical framework of the metabolic control of reproduction. Physiol Rev 2018; 98 (04) 2349-2380
  • 41 Manfredi-Lozano M, Roa J, Ruiz-Pino F. et al. Defining a novel leptin-melanocortin-kisspeptin pathway involved in the metabolic control of puberty. Mol Metab 2016; 5 (10) 844-857
  • 42 Pinhas-Hamiel O, Singer S, Pilpel N. et al. Adiponectin levels in adolescent girls with polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 2009; 71 (06) 823-827
  • 43 Rao PM, Kelly DM, Jones TH. Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nat Rev Endocrinol 2013; 9 (08) 479-493
  • 44 Rosenfield RL, Bordini B. Evidence that obesity and androgens have independent and opposing effects on gonadotropin production from puberty to maturity. Brain Res 2010; 1364: 186-197
  • 45 Silvestris E, de Pergola G, Rosania R, Loverro G. Obesity as disruptor of the female fertility. Reprod Biol Endocrinol 2018; 16 (01) 22
  • 46 Sarchielli E, Comeglio P, Squecco R. et al. Tumor necrosis factor-α impairs kisspeptin signaling in human gonadotropin-releasing hormone primary neurons. J Clin Endocrinol Metab 2017; 102 (01) 46-56
  • 47 Morelli A, Sarchielli E, Comeglio P. et al. Metabolic syndrome induces inflammation and impairs gonadotropin-releasing hormone neurons in the preoptic area of the hypothalamus in rabbits. Mol Cell Endocrinol 2014; 382 (01) 107-119
  • 48 Gesink Law DC, Maclehose RF, Longnecker MP. Obesity and time to pregnancy. Hum Reprod 2007; 22 (02) 414-420
  • 49 Kelsey MM, Braffett BH, Geffner ME. et al; TODAY Study Group. Menstrual dysfunction in girls from the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) Study. J Clin Endocrinol Metab 2018; 103 (06) 2309-2318
  • 50 Broughton DE, Moley KH. Obesity and female infertility: potential mediators of obesity's impact. Fertil Steril 2017; 107 (04) 840-847
  • 51 Wu RX, Dong YY, Yang PW. et al. CD36- and obesity-associated granulosa cells dysfunction. Reprod Fertil Dev 2019; 31 (05) 993-1001
  • 52 Dhindsa S, Ghanim H, Batra M, Dandona P. Hypogonadotropic hypogonadism in men with diabesity. Diabetes Care 2018; 41 (07) 1516-1525
  • 53 Cohen J, Nassau DE, Patel P, Ramasamy R. Low testosterone in adolescents & young adults. Front Endocrinol (Lausanne) 2020; 10: 916
  • 54 Fernandez CJ, Chacko EC, Pappachan JM. Male obesity-related secondary hypogonadism - pathophysiology, clinical implications and management. Eur Endocrinol 2019; 15 (02) 83-90
  • 55 Nokoff N, Thurston J, Hilkin A. et al. Sex differences in effects of obesity on reproductive hormones and glucose metabolism in early puberty. J Clin Endocrinol Metab 2019; 104 (10) 4390-4397
  • 56 Sopher AB, Jean AM, Zwany SK. et al. Bone age advancement in prepubertal children with obesity and premature adrenarche: possible potentiating factors. Obesity (Silver Spring) 2011; 19 (06) 1259-1264
  • 57 Clark AM, Ledger W, Galletly C. et al. Weight loss results in significant improvement in pregnancy and ovulation rates in anovulatory obese women. Hum Reprod 1995; 10 (10) 2705-2712
  • 58 Corona G, Rastrelli G, Monami M. et al. Body weight loss reverts obesity-associated hypogonadotropic hypogonadism: a systematic review and meta-analysis. Eur J Endocrinol 2013; 168 (06) 829-843
  • 59 Jensterle M, Podbregar A, Goricar K, Gregoric N, Janez A. Effects of liraglutide on obesity-associated functional hypogonadism in men. Endocr Connect 2019; 8 (03) 195-202
  • 60 Mushannen T, Cortez P, Stanford FC, Singhal V. Obesity and hypogonadism - a narrative review highlighting the need for high-quality data in adolescents. Children (Basel) 2019; 6 (05) E63
  • 61 Teede HJ, Misso ML, Costello MF. et al; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril 2018; 110 (03) 364-379
  • 62 Mu L, Zhao Y, Li R, Lai Y, Chang HM, Qiao J. Prevalence of polycystic ovary syndrome in a metabolically healthy obese population. Int J Gynaecol Obstet 2019; 146 (02) 164-169
  • 63 Teede HJ, Joham AE, Paul E. et al. Longitudinal weight gain in women identified with polycystic ovary syndrome: results of an observational study in young women. Obesity (Silver Spring) 2013; 21 (08) 1526-1532
  • 64 Ollila MM, Piltonen T, Puukka K. et al. Weight gain and dyslipidemia in early adulthood associate with polycystic ovary syndrome: prospective cohort study. J Clin Endocrinol Metab 2016; 101 (02) 739-747
  • 65 Coutinho EA, Kauffman AS. The role of the brain in the pathogenesis and physiology of polycystic ovary syndrome (PCOS). Med Sci (Basel) 2019; 7 (08) E84
  • 66 Cree-Green M, Bergman BC, Coe GV. et al. Hepatic steatosis is common in adolescents with obesity and PCOS and relates to de novo lipogenesis but not insulin resistance. Obesity (Silver Spring) 2016; 24 (11) 2399-2406
  • 67 Cree-Green M, Rahat H, Newcomer BR. et al. Insulin resistance, hyperinsulinemia, and mitochondria dysfunction in nonobese girls with polycystic ovarian syndrome. J Endocr Soc 2017; 1 (07) 931-944
  • 68 Dunaif A. Insulin resistance in polycystic ovarian syndrome. Ann N Y Acad Sci 1993; 687: 60-64
  • 69 Fox JH, Licholai T, Green G, Dunaif A. Differential effects of oral glucose-mediated versus intravenous hyperinsulinemia on circulating androgen levels in women. Fertil Steril 1993; 60 (06) 994-1000
  • 70 Rosenbaum D, Haber RS, Dunaif A. Insulin resistance in polycystic ovary syndrome: decreased expression of GLUT-4 glucose transporters in adipocytes. Am J Physiol 1993; 264 (2, Pt 1): E197-E202
  • 71 Glintborg D, Andersen M, Hagen C. et al. Evaluation of metabolic risk markers in polycystic ovary syndrome (PCOS). Adiponectin, ghrelin, leptin and body composition in hirsute PCOS patients and controls. Eur J Endocrinol 2006; 155 (02) 337-345
  • 72 Shorakae S, Abell SK, Hiam DS. et al. High-molecular-weight adiponectin is inversely associated with sympathetic activity in polycystic ovary syndrome. Fertil Steril 2018; 109 (03) 532-539
  • 73 Arusoglu G, Koksal G, Cinar N, Tapan S, Aksoy DY, Yildiz BO. Basal and meal-stimulated ghrelin, PYY, CCK levels and satiety in lean women with polycystic ovary syndrome: effect of low-dose oral contraceptive. J Clin Endocrinol Metab 2013; 98 (11) 4475-4482
  • 74 Hirschberg AL, Naessen S, Stridsberg M, Bystrom B, Holtet J. Impaired cholecystokinin secretion and disturbed appetite regulation in women with polycystic ovary syndrome. Gynecol Endocrinol 2004; 19 (02) 79-87
  • 75 Kim JY, Tfayli H, Michaliszyn SF, Lee S, Arslanian S. Distinguishing characteristics of metabolically healthy versus metabolically unhealthy obese adolescent girls with polycystic ovary syndrome. Fertil Steril 2016; 105 (06) 1603-1611
  • 76 George JT, Kakkar R, Marshall J. et al. Neurokinin B receptor antagonism in women with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metab 2016; 101 (11) 4313-4321
  • 77 Nestler JE, Jakubowicz DJ, de Vargas AF, Brik C, Quintero N, Medina F. Insulin stimulates testosterone biosynthesis by human thecal cells from women with polycystic ovary syndrome by activating its own receptor and using inositolglycan mediators as the signal transduction system. J Clin Endocrinol Metab 1998; 83 (06) 2001-2005
  • 78 Abdolahian S, Tehrani FR, Amiri M. et al. Effect of lifestyle modifications on anthropometric, clinical, and biochemical parameters in adolescent girls with polycystic ovary syndrome: a systematic review and meta-analysis. BMC Endocr Disord 2020; 20 (01) 71
  • 79 Moran LJ, Brown WJ, McNaughton SA, Joham AE, Teede HJ. Weight management practices associated with PCOS and their relationships with diet and physical activity. Hum Reprod 2017; 32 (03) 669-678
  • 80 Lie Fong S, Douma A, Verhaeghe J. Implementing the international evidence-based guideline of assessment and management of polycystic ovary syndrome (PCOS): how to achieve weight loss in overweight and obese women with PCOS?. J Gynecol Obstet Hum Reprod 2021; 50 (06) 101894
  • 81 Woodward A, Broom D, Harrop D. et al. The effects of physical exercise on cardiometabolic outcomes in women with polycystic ovary syndrome not taking the oral contraceptive pill: a systematic review and meta-analysis. J Diabetes Metab Disord 2019; 18 (02) 597-612
  • 82 Aktaş HŞ, Uzun YE, Kutlu O. et al. The effects of high intensity-interval training on vaspin, adiponectin and leptin levels in women with polycystic ovary syndrome. Arch Physiol Biochem 2022; 128: 37-42
  • 83 Porchia LM, Hernandez-Garcia SC, Gonzalez-Mejia ME, López-Bayghen E. Diets with lower carbohydrate concentrations improve insulin sensitivity in women with polycystic ovary syndrome: a meta-analysis. Eur J Obstet Gynecol Reprod Biol 2020; 248: 110-117
  • 84 Kazemi M, Hadi A, Pierson RA, Lujan ME, Zello GA, Chilibeck PD. Effects of Dietary glycemic index and glycemic load on cardiometabolic and reproductive profiles in women with polycystic ovary syndrome: a systematic review and meta-analysis of randomized controlled trials. Adv Nutr 2021; 12 (01) 161-178
  • 85 Yheulon CG, Millard AJ, Balla FM. et al. Laparoscopic sleeve gastrectomy outcomes in patients with polycystic ovary syndrome. Am Surg 2019; 85 (03) 252-255
  • 86 Teede H, Tassone EC, Piltonen T. et al. Effect of the combined oral contraceptive pill and/or metformin in the management of polycystic ovary syndrome: a systematic review with meta-analyses. Clin Endocrinol (Oxf) 2019; 91 (04) 479-489
  • 87 Teede HJ, Meyer C, Hutchison SK, Zoungas S, McGrath BP, Moran LJ. Endothelial function and insulin resistance in polycystic ovary syndrome: the effects of medical therapy. Fertil Steril 2010; 93 (01) 184-191
  • 88 Manzoor S, Ganie MA, Amin S. et al. Oral contraceptive use increases risk of inflammatory and coagulatory disorders in women with polycystic ovarian syndrome: an observational study. Sci Rep 2019; 9 (01) 10182
  • 89 Practice Committee of the American Society for Reproductive Medicine. Electronic address: ASRM@asrm.org, Practice Committee of the American Society for Reproductive Medicine. Role of metformin for ovulation induction in infertile patients with polycystic ovary syndrome (PCOS): a guideline. Fertil Steril 2017; 108 (03) 426-441
  • 90 Majuri A, Santaniemi M, Rautio K. et al. Rosiglitazone treatment increases plasma levels of adiponectin and decreases levels of resistin in overweight women with PCOS: a randomized placebo-controlled study. Eur J Endocrinol 2007; 156 (02) 263-269
  • 91 Elkind-Hirsch K, Marrioneaux O, Bhushan M, Vernor D, Bhushan R. Comparison of single and combined treatment with exenatide and metformin on menstrual cyclicity in overweight women with polycystic ovary syndrome. J Clin Endocrinol Metab 2008; 93 (07) 2670-2678
  • 92 Frøssing S, Nylander M, Chabanova E. et al. Effect of liraglutide on ectopic fat in polycystic ovary syndrome: a randomized clinical trial. Diabetes Obes Metab 2018; 20 (01) 215-218
  • 93 Jensterle M, Goricar K, Janez A. Metformin as an initial adjunct to low-dose liraglutide enhances the weight-decreasing potential of liraglutide in obese polycystic ovary syndrome: randomized control study. Exp Ther Med 2016; 11 (04) 1194-1200
  • 94 Jensterle M, Kravos NA, Goričar K, Janez A. Short-term effectiveness of low dose liraglutide in combination with metformin versus high dose liraglutide alone in treatment of obese PCOS: randomized trial. BMC Endocr Disord 2017; 17 (01) 5
  • 95 Jensterle M, Kravos NA, Pfeifer M, Kocjan T, Janez A. A 12-week treatment with the long-acting glucagon-like peptide 1 receptor agonist liraglutide leads to significant weight loss in a subset of obese women with newly diagnosed polycystic ovary syndrome. Hormones (Athens) 2015; 14 (01) 81-90
  • 96 Güngör NK. Overweight and obesity in children and adolescents. J Clin Res Pediatr Endocrinol 2014; 6 (03) 129-143
  • 97 Mason K, Page L, Balikcioglu PG. Screening for hormonal, monogenic, and syndromic disorders in obese infants and children. Pediatr Ann 2014; 43 (09) e218-e224
  • 98 Malhotra S. Genetic and syndromic obesity. Paper presented at: Harvard Medical School and Massachusetts General Hospital 2019 Blackburn Course in Obesity Medicine. 2019. Boston, MA:
  • 99 Hammoud AO, Gibson M, Peterson CM, Hamilton BD, Carrell DT. Obesity and male reproductive potential. J Androl 2006; 27 (05) 619-626
  • 100 McFarlane KJaS. Secondary cause of obesity. Therapy 2007; 4 (05) 641-650
  • 101 Hainerová IA, Zamrazilová H, Sedláčková D, Hainer V. Hypogonadotropic hypogonadism in a homozygous MC4R mutation carrier and the effect of sibutramine treatment on body weight and obesity-related health risks. Obes Facts 2011; 4 (04) 324-328
  • 102 Aminzadeh M, Kim HG, Layman LC, Cheetham TD. Rarer syndromes characterized by hypogonadotropic hypogonadism. Front Horm Res 2010; 39: 154-167
  • 103 Napolitano L, Barone B, Morra S. et al. Hypogonadism in Patients with Prader Willi syndrome: a narrative review. Int J Mol Sci 2021; 22 (04) 1993
  • 104 Gross-Tsur V, Hirsch HJ, Benarroch F, Eldar-Geva T. The FSH-inhibin axis in Prader-Willi syndrome: heterogeneity of gonadal dysfunction. Reprod Biol Endocrinol 2012; 10: 39
  • 105 Shokrpour M, Foroozanfard F, Afshar Ebrahimi F. et al. Comparison of myo-inositol and metformin on glycemic control, lipid profiles, and gene expression related to insulin and lipid metabolism in women with polycystic ovary syndrome: a randomized controlled clinical trial. Gynecol Endocrinol 2019; 35 (05) 406-411
  • 106 Rodrigues JM, Fernandes HD, Caruthers C, Braddock SR, Knutsen AP. Cohen syndrome: review of the literature. Cureus 2018; 10 (09) e3330
  • 107 Goldstone AP, Beales PL. Genetic obesity syndromes. Front Horm Res 2008; 36: 37-60
  • 108 Forsythe E, Beales PL. Bardet-Biedl syndrome. Eur J Hum Genet 2013; 21 (01) 8-13
  • 109 Koscinski I, Mark M, Messaddeq N. et al. Reproduction function in male patients with Bardet Biedl syndrome. J Clin Endocrinol Metab 2020; 105 (12) e4417-e4429
  • 110 Feuillan PP, Ng D, Han JC. et al. Patients with Bardet-Biedl syndrome have hyperleptinemia suggestive of leptin resistance. J Clin Endocrinol Metab 2011; 96 (03) E528-E535
  • 111 Zaghloul NA, Katsanis N. Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 2009; 119 (03) 428-437
  • 112 Stoler JM, Herrin JT, Holmes LB. Genital abnormalities in females with Bardet-Biedl syndrome. Am J Med Genet 1995; 55 (03) 276-278
  • 113 Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J Med Genet 1999; 36 (06) 437-446
  • 114 Marion V, Stoetzel C, Schlicht D. et al. Transient ciliogenesis involving Bardet-Biedl syndrome proteins is a fundamental characteristic of adipogenic differentiation. Proc Natl Acad Sci U S A 2009; 106 (06) 1820-1825
  • 115 Starks RD, Beyer AM, Guo DF. et al. Regulation of insulin receptor trafficking by Bardet Biedl syndrome proteins. PLoS Genet 2015; 11 (06) e1005311
  • 116 Toma HS, Tan PL, McKusick VA, Katsanis N, Adams NA. Bardet-Biedl syndrome in an African-American patient: should the diagnostic criteria be expanded to include hydrometrocolpos?. Ophthalmic Genet 2007; 28 (02) 95-99
  • 117 Mantovani G, Bastepe M, Monk D. et al. Diagnosis and management of pseudohypoparathyroidism and related disorders: first international consensus statement. Nat Rev Endocrinol 2018; 14 (08) 476-500
  • 118 Weinstein LS, Chen M, Liu J. Gs(alpha) mutations and imprinting defects in human disease. Ann N Y Acad Sci 2002; 968: 173-197
  • 119 Linglart A, Levine MA, Jüppner H. Pseudohypoparathyroidism. Endocrinol Metab Clin North Am 2018; 47 (04) 865-888
  • 120 Haldeman-Englert CR, Hurst ACE, Levine MA. Disorders of GNAS inactivation. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews(®). Seattle, WA: University of Washington, Seattle Copyright © 1993–2021, University of Washington, Seattle; 1993
  • 121 Shoemaker AH, Jüppner H. Nonclassic features of pseudohypoparathyroidism type 1A. Curr Opin Endocrinol Diabetes Obes 2017; 24 (01) 33-38
  • 122 Wolfsdorf JI, Rosenfield RL, Fang VS, Kobayashi R, Razdan AK, Kim MH. Partial gonadotrophin-resistance in pseudohypoparathyroidism. Acta Endocrinol (Copenh) 1978; 88 (02) 321-328
  • 123 Tahani N, Maffei P, Dollfus H. et al. Consensus clinical management guidelines for Alström syndrome. Orphanet J Rare Dis 2020; 15 (01) 253
  • 124 Paisey RB, Steeds R, Barrett T, Williams D, Geberhiwot T, Gunay-Aygun M. Alström syndrome. In: Adam MP, Ardinger HH, Pagon RA. et al., eds. GeneReviews(®). Seattle, WA: University of Washington, Seattle Copyright © 1993–2021, University of Washington, Seattle; 1993
  • 125 Marshall JD, Bronson RT, Collin GB. et al. New Alström syndrome phenotypes based on the evaluation of 182 cases. Arch Intern Med 2005; 165 (06) 675-683
  • 126 Dassie F, Favaretto F, Bettini S. et al. Alström syndrome: an ultra-rare monogenic disorder as a model for insulin resistance, type 2 diabetes mellitus and obesity. Endocrine 2021; 71 (03) 618-625
  • 127 Han JC, Reyes-Capo DP, Liu CY. et al. Comprehensive endocrine-metabolic evaluation of patients with Alström syndrome compared with BMI-matched controls. J Clin Endocrinol Metab 2018; 103 (07) 2707-2719
  • 128 Aykut A, Özen S, Gökşen D. et al. Melanocortin 4 receptor (MC4R) gene variants in children and adolescents having familial early-onset obesity: genetic and clinical characteristics. Eur J Pediatr 2020; 179 (09) 1445-1452
  • 129 De Rosa MC, Chesi A, McCormack S. et al. Characterization of rare variants in MC4R in African American and Latino Children with severe early-onset obesity. J Clin Endocrinol Metab 2019; 104 (07) 2961-2970
  • 130 Lubrano-Berthelier C, Durand E, Dubern B. et al. Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum Mol Genet 2003; 12 (02) 145-153
  • 131 Martinelli CE, Keogh JM, Greenfield JR. et al. Obesity due to melanocortin 4 receptor (MC4R) deficiency is associated with increased linear growth and final height, fasting hyperinsulinemia, and incompletely suppressed growth hormone secretion. J Clin Endocrinol Metab 2011; 96 (01) E181-E188
  • 132 Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348 (12) 1085-1095
  • 133 Farooqi IS, Wangensteen T, Collins S. et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 2007; 356 (03) 237-247
  • 134 Nunziata A, Funcke JB, Borck G. et al. Functional and phenotypic characteristics of human leptin receptor mutations. J Endocr Soc 2018; 3 (01) 27-41
  • 135 Paz-Filho G, Mastronardi C, Delibasi T, Wong ML, Licinio J. Congenital leptin deficiency: diagnosis and effects of leptin replacement therapy. Arq Bras Endocrinol Metabol 2010; 54 (08) 690-697
  • 136 Dubern B, Clement K. Leptin and leptin receptor-related monogenic obesity. Biochimie 2012; 94 (10) 2111-2115
  • 137 Fischer-Posovszky P, von Schnurbein J, Moepps B. et al. A new missense mutation in the leptin gene causes mild obesity and hypogonadism without affecting T cell responsiveness. J Clin Endocrinol Metab 2010; 95 (06) 2836-2840
  • 138 Israel D, Chua Jr S. Leptin receptor modulation of adiposity and fertility. Trends Endocrinol Metab 2010; 21 (01) 10-16
  • 139 Farooqi IS, Jebb SA, Langmack G. et al. Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 1999; 341 (12) 879-884
  • 140 Licinio J, Caglayan S, Ozata M. et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci U S A 2004; 101 (13) 4531-4536
  • 141 Ratra DV, Elias CF. Chemical identity of hypothalamic neurons engaged by leptin in reproductive control. J Chem Neuroanat 2014; 61-62: 233-238
  • 142 Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JW. PCSK1 mutations and human endocrinopathies: from obesity to gastrointestinal disorders. Endocr Rev 2016; 37 (04) 347-371
  • 143 Pépin L, Colin E, Tessarech M. et al. A new case of PCSK1 pathogenic variant with congenital proprotein convertase 1/3 deficiency and literature review. J Clin Endocrinol Metab 2019; 104 (04) 985-993
  • 144 Martín MG, Lindberg I, Solorzano-Vargas RS. et al. Congenital proprotein convertase 1/3 deficiency causes malabsorptive diarrhea and other endocrinopathies in a pediatric cohort. Gastroenterology 2013; 145 (01) 138-148
  • 145 Jonklaas J, Bianco AC, Bauer AJ. et al; American Thyroid Association Task Force on Thyroid Hormone Replacement. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid 2014; 24 (12) 1670-1751
  • 146 Pacifico L, Anania C, Ferraro F, Andreoli GM, Chiesa C. Thyroid function in childhood obesity and metabolic comorbidity. Clin Chim Acta 2012; 413 (3-4): 396-405
  • 147 Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev 2010; 31 (05) 702-755
  • 148 Saei Ghare Naz M, Rostami Dovom M, Ramezani Tehrani F. The menstrual disturbances in endocrine disorders: a narrative review. Int J Endocrinol Metab 2020; 18 (04) e106694
  • 149 Salerno M, Micillo M, Di Maio S. et al. Longitudinal growth, sexual maturation and final height in patients with congenital hypothyroidism detected by neonatal screening. Eur J Endocrinol 2001; 145 (04) 377-383
  • 150 Nieman LK, Biller BM, Findling JW. et al. The diagnosis of Cushing's syndrome: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2008; 93 (05) 1526-1540
  • 151 Pivonello R, Isidori AM, De Martino MC, Newell-Price J, Biller BM, Colao A. Complications of Cushing's syndrome: state of the art. Lancet Diabetes Endocrinol 2016; 4 (07) 611-629
  • 152 Lado-Abeal J, Rodriguez-Arnao J, Newell-Price JD. et al. Menstrual abnormalities in women with Cushing's disease are correlated with hypercortisolemia rather than raised circulating androgen levels. J Clin Endocrinol Metab 1998; 83 (09) 3083-3088
  • 153 Garne E, Rissmann A, Addor MC. et al. Epidemiology of septo-optic dysplasia with focus on prevalence and maternal age - a EUROCAT study. Eur J Med Genet 2018; 61 (09) 483-488
  • 154 Patel L, McNally RJ, Harrison E, Lloyd IC, Clayton PE. Geographical distribution of optic nerve hypoplasia and septo-optic dysplasia in Northwest England. J Pediatr 2006; 148 (01) 85-88
  • 155 Webb EA, Dattani MT. Septo-optic dysplasia. Eur J Hum Genet 2010; 18 (04) 393-397
  • 156 Kelberman D, Dattani MT. Septo-optic dysplasia - novel insights into the aetiology. Horm Res 2008; 69 (05) 257-265
  • 157 Cerbone M, Güemes M, Wade A, Improda N, Dattani M. Endocrine morbidity in midline brain defects: differences between septo-optic dysplasia and related disorders. EClinicalMedicine 2020; 19: 100224
  • 158 Vedin AM, Garcia-Filion P, Fink C, Borchert M, Geffner ME. Serum prolactin concentrations in relation to hypopituitarism and obesity in children with optic nerve hypoplasia. Horm Res Paediatr 2012; 77 (05) 277-280
  • 159 Ladjouze A, Soskin S, Garel C. et al. GH deficiency with central precocious puberty: a new rare disorder associated with a developmental defect of the hypothalamic-pituitary area. Eur J Endocrinol 2007; 156 (04) 463-469
  • 160 Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017. Neuro-oncol 2020; 22 (12, Suppl 2): iv1-iv96
  • 161 McCrea HJ, George E, Settler A, Schwartz TH, Greenfield JP. Pediatric suprasellar tumors. J Child Neurol 2016; 31 (12) 1367-1376
  • 162 Abuzzahab MJ, Roth CL, Shoemaker AH. Hypothalamic obesity: prologue and promise. Horm Res Paediatr 2019; 91 (02) 128-136
  • 163 Haliloglu B, Bereket A. Hypothalamic obesity in children: pathophysiology to clinical management. J Pediatr Endocrinol Metab 2015; 28 (5-6): 503-513
  • 164 van Iersel L, Brokke KE, Adan RAH, Bulthuis LCM, van den Akker ELT, van Santen HM. Pathophysiology and individualized treatment of hypothalamic obesity following craniopharyngioma and other suprasellar tumors: a systematic review. Endocr Rev 2019; 40 (01) 193-235
  • 165 Santoro C, Perrotta S, Picariello S. et al. Pretreatment endocrine disorders due to optic pathway gliomas in pediatric neurofibromatosis type 1: multicenter study. J Clin Endocrinol Metab 2020; 105 (06) dgaa138
  • 166 Chemaitilly W, Merchant TE, Li Z. et al. Central precocious puberty following the diagnosis and treatment of paediatric cancer and central nervous system tumours: presentation and long-term outcomes. Clin Endocrinol (Oxf) 2016; 84 (03) 361-371
  • 167 ACOG Committee Opinion No. 747. Summary: gynecologic issues in children and adolescent cancer patients and survivors. Obstet Gynecol 2018; 132 (02) 535-536
  • 168 Swee DS, Quinton R. Managing congenital hypogonadotrophic hypogonadism: a contemporary approach directed at optimizing fertility and long-term outcomes in males. Ther Adv Endocrinol Metab 2019; 10: 2042018819826889
  • 169 Huseyin K, Berk B, Tolga K, Eser O, Ali G, Murat A. Management of ovulation induction and intrauterine insemination in infertile patients with hypogonadotropic hypogonadism. J Gynecol Obstet Hum Reprod 2019; 48 (10) 833-838
  • 170 El-Maouche D, Arlt W, Merke DP. Congenital adrenal hyperplasia. Lancet 2017; 390 (10108): 2194-2210
  • 171 Papadakis G, Kandaraki EA, Tseniklidi E, Papalou O, Diamanti-Kandarakis E. Polycystic ovary syndrome and NC-CAH: distinct characteristics and common findings. a systematic review. Front Endocrinol (Lausanne) 2019; 10: 388
  • 172 Speiser PW, Arlt W, Auchus RJ. et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2018; 103 (11) 4043-4088