Subscribe to RSS

DOI: 10.1055/s-0042-1744292
Biocomponents Based on Hydroxiapatite: Influence of Sterilization on the Mechanical Resistance
Article in several languages: português | EnglishFinancial Support There was no financial support from public, commercial, or non-profit sources.

Abstract
Objective This study aimed to evaluate the influence of sterilization on the compressive and flexural mechanical strength of hydroxyapatite-based biocomponents obtained through freeze-dried bovine bone, and its association with chitosan.
Methods Freeze-dried bovine bone was processed into 100 μm particles and mixed with 50% of its weight in chitosan. The mixture was packed in metallic molds for preparing the specimens, and sterilized at 127°C using an autoclave for subsequent experimentation. The specimens were subjected to compression and flexion tests following norm 5833 of the International Organization for Standardization (ISO), with 6 × 12 mm cylindrical blocks (for compression tests) and 75 × 10 × 3.3 mm plates (for flexion tests) as samples. The samples were divided into four groups of 20 specimens each, with 10 for compression and 10 for flexion tests. Three groups were sterilized (autoclave, gamma rays, and ethylene oxide), whereas the fourth group (control) was not. The mechanical tests obtained from the different sterilization processes were compared using analysis of variance (ANOVA, p < 0.05), followed by the Tukey multiple comparison test of means, with a 95% confidence interval.
Results The specimens presented mean compressive strengths of 10.25 MPa for the control group and 3.67 MPa, 9.65 MPa, and 9.16 MPa after ethylene oxide, gamma ray, and autoclave sterilization, respectively. Flexion test results showed an average resistance of 0.40 MPa in the control group, and 0.15 MPa, 0.17 MPa, and 0.30 MPa after ethylene oxide, gamma ray, and autoclave sterilization, respectively. There were statistically significant differences observed in the maximum compression of the ethylene oxide-sterilized group compared with that of the control group (p = 0.0002), gamma ray-sterilized (p = 0.0003), and the autoclaved (p = 0.0006) groups. There was a statistically significant difference in maximum flexion of the specimens sterilized by gamma rays when compared with the control group (p = 0.0245). However, low flexural strengths were observed in all specimens.
Conclusion The autoclave sterilization group did not result in statistically significant differences in either compression or flexion strength tests. Thus, the autoclave proved to be the best sterilization option for the hydroxyapatite-based biocomponents in this study.
Keywords
biocompatible materials - chitosan - bone transplantation - hydroxyapatite - mechanical testsTrabalho desenvolvido no Hospital São Vicente de Paulo (HSVP) e Universidade de Passo Fundo (UPF), RS, Brasil.
Publication History
Received: 01 July 2021
Accepted: 20 January 2022
Article published online:
22 July 2022
© 2022. Sociedade Brasileira de Ortopedia e Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
Referências
- 1 Galia CR, Macedo CA, Rosito R, Mello TM, Camargo LM, Moreira LF. In vitro and in vivo evaluation of lyophilized bovine bone biocompatibility. Clinics (São Paulo) 2008; 63 (06) 801-806
- 2 Owusu-Dompreh F. Aplicação de tecnologias de manufatura rápida ao desenvolvimento integrado de produtos em clínicas e indústrias de manufatura médica [dissertação]. Ohio: Youngstown State University; 2013. . Disponível em: http://rave.ohiolink.edu/etdc/view?acc_num=ysu1389697786
- 3 Teixeira ER. Superfícies dos implantes: o estágio atual. In: Dinato JC, Polido WD. Implantes osseointegrados: cirurgia e prótese. São Paulo: Artes Médicas; 2001: 63-80
- 4 Fook ACB, Aparecida AH, Fook MVL. Desenvolvimento de biocerâmicas porosas de hidroxiapatita para utilização comoscaffolds para regeneração óssea. Rev Matéria 2010; 15 (03) 392-399
- 5 Ono I, Tateshita T, Nakajima T. Evaluation of a high density polyethylene fixing system for hydroxyapatite ceramic implants. Biomaterials 2000; 21 (02) 143-151
- 6 Pretorius JA, Melsen B, Nel JC, Germishuys PJ. A histomorphometric evaluation of factors influencing the healing of bony defects surrounding implants. Int J Oral Maxillofac Implants 2005; 20 (03) 387-398
- 7 Vital CC, Borges APB, Fonseca CC. et al. Biocompatibilidade e comportamento de compósitos de hidroxiapatita em falha óssea na ulna de coelhos. Arq Bras Med Vet Zootec 2006; 58 (02) 175-183
- 8 Rezende CMF, Borges APB, Bernis WO, Melo EG, Nobrega Neto PI. Aspectos clínicos cirúrgicos e radiográficos da hidroxiapatita sintética na diáfise proximal da tíbia de cães. Arq Bras Med Vet Zootec 1998; 50 (05) 537-545
- 9 Kong L, Yuan G, Lu G, Gong Y, Zhao N, Zhang X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polym J 2006; 42 (12) 3171-3179
- 10 Costa Silva HSR, Santos KSCR, Ferreira EI. Quitosana: derivados hidrossolúveis, aplicações farmacêuticas e avanços. Quim Nova 2006; 29 (04) 776-785
- 11 Enescu D, Olteanu CE. Chitosan funcionalizado e a sua utilização na investigação farmacêutica, biomédica e biotecnológica. Chem Eng Commun 2008; 195 (10) 1269-1291
- 12 Cheung C. The future of bone healing. Clin Podiatr Med Surg 2005; 22 (04) 631-641
- 13 Somfai T, Noguchi J, Kaneko H. et al. Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage. Theriogenology 2010; 73 (02) 147-156
- 14 Danilchenko SN, Maksym PV, Kalinkevich OV, Kalinkevich AN. Chitosan–hydroxyapatite composite biomaterials made by a one step co-precipitation method: preparation, characterization and in vivo tests. J Biol Phys Chem 2009; 9 (03) 119-126
- 15 Fontes EB. Hidroxiapatita sintética associada ou não à fração total de células mononucleares na regeneração de osso alveolar de cães [dissertação]. Santa Maria, RS: Medicina Veterinária, Universidade Federal de Santa Maria; 2009
- 16 Rolim AE, Carvalho F, Costa R, Rosa FP. Chitosan Scaffolds - Physico -Chemical and Biological Properties for Bone Repair. Rev Virtual Quim 2018; 10 (02) 211-228
- 17 Rosito R. Reconstrução acebular com enxerto ósseo liofilizado humano ou bovino associado a dispositivo de reforço [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul, Faculdade de Medicina; 2006
- 18 Fosse L, Rønningen H, Benum P, Lydersen S, Sandven RB. Factors affecting stiffness properties in impacted morsellized bone used in revision hip surgery: an experimental in vitro study. J Biomed Mater Res A 2006; 78 (02) 423-431
- 19 Iturria M, Rodriguez-Emmenegger C, Viegas R. et al. Basic design of lyophilization protocols for human bone tissues. Lat Am Appl Res 2010; 40 (02) 147-151
- 20 Orsi VV, Collares MVM, Nardi NB. et al. Osso liofilizado bovino não-desmineralizado com células-tronco mesenquimais para engenharia tecidual: estudo experimental em sítio heterotópico. Rev Soc Bras Cir Craniomaxilofac 2007; 10 (04) 133-139
- 21 Galia CR. Enxertos ósseos liofilizados impactados humano e bovino em revisão de artroplastia total de quadril [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul; 2004
- 22 Kakiuchi M, Ono K, Nishimura A, Shiokawa H. Preparation of bank bone using defatting, freeze-drying and sterilisation with ethylene oxide gas. Part 1. Experimental evaluation of its efficacy and safety. Int Orthop 1996; 20 (03) 142-146
- 23 Mendes R. Estudo experimental comparativo dos cimentos ósseos nacionais [dissertação]. Rio de Janeiro: Pontifícia Universidade Católica do Rio de Janeiro; 2006
- 24 Oliveira ACP. Comparação entre enxertos ósseos autólogo, homólogo congelado e homólogo liofilizado em cranioplastia de ratos [dissertação]. Porto Alegre: Universidade Federal do Rio Grande do Sul, Faculdade de Medicina; 2007
- 25 Nather A, Thambyah A, Goh JC. Biomechanical strength of deep-frozen versus lyophilized large cortical allografts. Clin Biomech (Bristol, Avon) 2004; 19 (05) 526-533
- 26 Fideler BM, Vangsness Jr CT, Lu B, Orlando C, Moore T. Gamma irradiation: effects on biomechanical properties of human bone-patellar tendon-bone allografts. Am J Sports Med 1995; 23 (05) 643-646
- 27 Nguyen H, Morgan DA, Forwood MR. Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Bank 2007; 8 (02) 93-105
- 28 Mikhael MM, Huddleston PM, Zobitz ME, Chen Q, Zhao KD, An KN. Mechanical strength of bone allografts subjected to chemical sterilization and other terminal processing methods. J Biomech 2008; 41 (13) 2816-2820
- 29 Viceconti M, Toni A, Brizio L, Rubbini L, Borrelli A. The effect of autoclaving on the mechanical properties of bank bovine bone. Chir Organi Mov 1996; 81 (01) 63-68
- 30 Taylor D. Inactivation of the BSE agent. C R Biol 2002; 325 (01) 75-76
- 31 Agência Nacional de Vigilância Sanitária (ANVISA). Resolução RDC n. 156, de 11 de agosto de 2016. Dispõe sobre o registro, rotulagem e reprocessamento de produtos médicos, e dá outras providências. Disponível em: https://www.saude.mg.gov.br/index.php?option=com_gmg&controller=document&id=896