CC BY-NC-ND 4.0 · Revista Chilena de Ortopedia y Traumatología 2022; 63(01): e9-e16
DOI: 10.1055/s-0042-1743545
Artículo Original | Original Article

Quadrant Specific Tibial Interference Screw Fixation Allows Constant Displacement of Soft Tissue Grafts Inside Misplaced Tibial Tunnels: A Porcine Anterior Cruciate Ligament Quantitative Assessment Study

Article in several languages: español | English
Alex Vaisman
1   Clínica Alemana, Santiago, Chile
2   Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
,
2   Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
,
2   Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
,
1   Clínica Alemana, Santiago, Chile
2   Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
,
Sergio Arellano
1   Clínica Alemana, Santiago, Chile
2   Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
,
1   Clínica Alemana, Santiago, Chile
2   Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
› Author Affiliations

Abstract

Background The most common technical error during anterior cruciate ligament (ACL) reconstruction is incorrect tunnel placement. It remains unclear if a misplaced tibial tunnel may be corrected intraoperatively.

Aim To measure the displacement of soft-tissue grafts with tibial interference screws.

Materials and Methods Ex-vivo experimental study in 28 porcine knees. The flexor tendon of the posterior limb was harvested, doubled and sized to fit through a 9-mm misplaced tibial tunnel. The specimens were divided into 4 groups according to the quadrant of entry (anterior [A], posterior [P], medial [M], or lateral [L]) of a 9-mm tibial interference screw in relation to the graft. A millimetric ruler was placed at the tibial plateau, which was photographed with a an EOS T6 (Canon Inc., Ōta, Tokio, Japan) camera, and the image was digitalized and scaled to size. The length and direction of the graft displacements were measured with Adobe Photoshop CC 2019 (San José, CA, US). The mean differences among the groups were analyzed through one-way analysis of variance (ANOVA). The statistical analysis was performed using the Statistical Package for the Social Sciences (IBM SPSS Statistics for Windows, IBM Corp., Armonk, NY, US) software, version 25.0 (p ≤ 0.05)

Results The mean lengths of the graft displacements were similar among the groups: A – 4.4 mm; P –4.6 mm; M – 4.5 mm; and L – 4.3 mm, without statistically significant differences (p = 0.894). The mean directions of the graft displacements were also similar among the groups: A – 176° (standard deviation [SD]: ± 15.4°); P – 165° (SD: ± 16.6°); M – 166° (SD: ± 12.1°); and L – 169° (SD: ± 10.6°). No statistically significant differences were found (p = 0.42).

Conclusions Regardless of the entry quadrant, constant graft displacement to the opposite side was observed when the tibial screw reached the articular surface. Clinical relevance: a misplaced tibial tunnel may be corrected intraoperatively with a quadrant-specific screw, which must reach the articular surface to produce an effective graft displacement. Nevertheless, we cannot predict the magnitude of this error in every poorly-drilled tibial tunnel; it should be assessed case by case.

Statement of Authenticity

The present research is original, and all the information was duly cited, ruling out plagiarism.




Publication History

Received: 27 April 2021

Accepted: 07 December 2021

Article published online:
20 May 2022

© 2022. Sociedad Chilena de Ortopedia y Traumatologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • Referencias

  • 1 Purnell ML, Larson AI, Clancy W. Anterior cruciate ligament insertions on the tibia and femur and their relationships to critical bony landmarks using high-resolution volume-rendering computed tomography. Am J Sports Med 2008; 36 (11) 2083-2090 DOI: 10.1177/0363546508319896.
  • 2 Fu FH, van Eck CF, Tashman S, Irrgang JJ, Moreland MS. Anatomic anterior cruciate ligament reconstruction: a changing paradigm. Knee Surg Sports Traumatol Arthrosc 2015; 23 (03) 640-648
  • 3 Zaffagnini S, Signorelli C, Grassi A. et al. Anatomic Anterior Cruciate Ligament Reconstruction Using Hamstring Tendons Restores Quantitative Pivot Shift. Orthop J Sports Med 2018; 6 (12) 2325967118812364
  • 4 Rothrauff BB, Jorge A, de Sa D, Kay J, Fu FH, Musahl V. Anatomic ACL reconstruction reduces risk of post-traumatic osteoarthritis: a systematic review with minimum 10-year follow-up. Knee Surg Sports Traumatol Arthrosc 2020; 28 (04) 1072-1084
  • 5 Kraeutler MJ, Welton KL, McCarty EC, Bravman JT. Revision Anterior Cruciate Ligament Reconstruction. J Bone Joint Surg Am 2017; 99 (19) 1689-1696
  • 6 Pietrini SD, Ziegler CG, Anderson CJ. et al. Radiographic landmarks for tunnel positioning in double-bundle ACL reconstructions. Knee Surg Sports Traumatol Arthrosc 2011; 19 (05) 792-800 DOI: 10.1007/s00167-010-1372-1.
  • 7 Rowan FA, Marshall T, Gombosh MR, Farrow LD. Utilization of Osseous Landmarks for Anatomic Anterior Cruciate Ligament Femoral Tunnel Placement. J Knee Surg 2017; 30 (04) 359-363 DOI: 10.1055/s-0036-1592150.
  • 8 Buscayret F, Temponi EF, Saithna A, Thaunat M, Sonnery-Cottet B. Three-dimensional CT evaluation of tunnel positioning in ACL reconstruction using the single anteromedial bundle biological augmentation (SAMBBA) technique. Orthop J Sports Med 2017; 5 (05) 2325967117706511
  • 9 Parate P, Chernchujit B. A Surgical Technique for Posterolateral Placement of Interference Screw Accurately in Tibial Tunnel in Single-Bundle Anterior Cruciate Ligament Reconstruction. Arthrosc Tech 2016; 5 (06) e1481-e1486
  • 10 Hosseini A, Lodhia P, Van de Velde SK. et al. Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis. Int Orthop 2012; 36 (04) 845-852
  • 11 Watson JN, Wilson KJ, LaPrade CM, Kennedy NI, Campbell KJ. et al. Iatrogenic injury of the anterior meniscal root attachments following anterior cruciate ligament reconstruction tunnel reaming. Knee Surgery, Sports Traumatology, Arthroscopy 2015; 23 (08) 2360-2366 DOI: 10.1007/s00167-014-3079-1.
  • 12 Burnham JM, Malempati CS, Carpiaux A, Ireland ML, Johnson DL. Anatomic Femoral and Tibial Tunnel Placement During Anterior Cruciate Ligament Reconstruction: Anteromedial Portal All-Inside and Outside-In Techniques. Arthrosc Tech 2017; 6 (02) e275-e282
  • 13 Ishibashi Y, Rudy TW, Livesay GA, Stone JD, Fu FH, Woo SLY. The effect of anterior cruciate ligament graft fixation site at the tibia on knee stability: evaluation using a robotic testing system. Arthroscopy 1997; 13 (02) 177-182 DOI: 10.1016/S0749-8063(97)90152-3.
  • 14 Nakano H, Yasuda K, Tohyama H, Yamanaka M, Wada T, Kaneda K. Interference screw fixation of doubled flexor tendon graft in anterior cruciate ligament reconstruction - biomechanical evaluation with cyclic elongation. Clin Biomech (Bristol, Avon) 2000; 15 (03) 188-195 DOI: 10.1016/S0268-0033(99)00065-0.
  • 15 Vertullo CJ, Piepenbrink M, Smith PA, Wilson AJ, Wijdicks CA. Biomechanical Testing of Three Alternative Quadrupled Tendon Graft Constructs With Adjustable Loop Suspensory Fixation for Anterior Cruciate Ligament Reconstruction Compared With Four-Strand Grafts Fixed With Screws and Femoral Fixed Loop Devices. Am J Sports Med 2019; 47 (04) 828-836 DOI: 10.1177/0363546518825256.
  • 16 Sawyer GA, Anderson BC, Paller D, Heard WMR, Fadale PD. Effect of interference screw fixation on ACL graft tensile strength. J Knee Surg 2013; 26 (03) 155-159 DOI: 10.1055/s-0032-1324808.
  • 17 Shumborski S, Heath E, Salmon LJ. et al. A Randomized Controlled Trial of PEEK Versus Titanium Interference Screws for Anterior Cruciate Ligament Reconstruction With 2-Year Follow-up. Am J Sports Med 2019; 47 (10) 2386-2393 DOI: 10.1177/0363546519861530.
  • 18 Aga C, Rasmussen MT, Smith SD. et al. Biomechanical comparison of interference screws and combination screw and sheath devices for soft tissue anterior cruciate ligament reconstruction on the tibial side. Am J Sports Med 2013; 41 (04) 841-848
  • 19 Cain EL, Phillips BB, Charlebois SJ. et al. Effect of tibial tunnel dilation on pullout strength of semitendinosus-gracilis graft in anterior cruciate ligament reconstruction. Orthopedics 2005; 28: 779-783
  • 20 Crum R, Darren de SA, Ayeni OR, Musahl V. No difference between extraction drilling and serial dilation for tibial tunnel preparation in anterior cruciate ligament reconstruction: a systematic review. J ISAKOS 2018; 3 (03) 161-166
  • 21 Bhatia S, Korth K, Van Thiel GS. et al. Effect of reamer design on posteriorization of the tibial tunnel during endoscopic transtibial anterior cruciate ligament reconstruction. Am J Sports Med 2013; 41 (06) 1282-1289
  • 22 Mall NA, Matava MJ, Wright RW, Brophy RH. Relation between anterior cruciate ligament graft obliquity and knee laxity in elite athletes at the National Football League combine. Arthroscopy 2012; 28 (08) 1104-1113 DOI: 10.1016/j.arthro.2011.12.018.