Semin Musculoskelet Radiol 2022; 26(03): 216-229
DOI: 10.1055/s-0042-1743405
Review Article

Update: Posttreatment Imaging of the Knee after Cartilage Repair

1   Department of Radiology, Universityhospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Ali Guermazi
2   Department of Radiology, VA Healthcare System, West Roxbury, Massachusetts
3   Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
,
Rolf Janka
1   Department of Radiology, Universityhospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Michael Uder
1   Department of Radiology, Universityhospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
,
Xinning Li
4   Department of Orthopedic Surgery, Boston University School of Medicine, Boston, Massachusetts
,
Daichi Hayashi
5   Department of Radiology, Stony Brook University Renaissance School of Medicine, Stony Brook, New York
,
Frank W. Roemer
1   Department of Radiology, Universityhospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
3   Department of Radiology, Boston University School of Medicine, Boston, Massachusetts
› Author Affiliations

Abstract

Focal cartilage lesions are common pathologies at the knee joint that are considered important risk factors for the premature development of osteoarthritis. A wide range of surgical options, including but not limited to marrow stimulation, osteochondral auto- and allografting, and autologous chondrocyte implantation, allows for targeted treatment of focal cartilage defects. Arthroscopy is the standard of reference for the assessment of cartilage integrity and quality before and after repair. However, deep cartilage layers, intrachondral composition, and the subchondral bone are only partially or not at all visualized with arthroscopy. In contrast, magnetic resonance imaging offers noninvasive evaluation of the cartilage repair site, the subchondral bone, and the soft tissues of the joint pre- and postsurgery. Radiologists need to be familiar with the different surgical procedures available and their characteristic postsurgical imaging appearances to assess treatment success and possible complications adequately. We provide an overview of the most commonly performed surgical procedures for cartilage repair at the knee and typical postsurgical imaging characteristics.



Publication History

Article published online:
02 June 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13 (04) 456-460
  • 2 Messner K, Maletius W. The long-term prognosis for severe damage to weight-bearing cartilage in the knee: a 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand 1996; 67 (02) 165-168
  • 3 Widuchowski W, Widuchowski J, Trzaska T. Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 2007; 14 (03) 177-182
  • 4 Guermazi A, Roemer FW, Alizai H. et al. State of the art: MR imaging after knee cartilage repair surgery. Radiology 2015; 277 (01) 23-43
  • 5 Arøen A, Løken S, Heir S. et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32 (01) 211-215
  • 6 Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18 (07) 730-734
  • 7 Mithoefer K, Hambly K, Della Villa S, Silvers H, Mandelbaum BR. Return to sports participation after articular cartilage repair in the knee: scientific evidence. Am J Sports Med 2009; 37 (Suppl. 01) 167S-176S
  • 8 Bay-Jensen AC, Hoegh-Madsen S, Dam E. et al. Which elements are involved in reversible and irreversible cartilage degradation in osteoarthritis?. Rheumatol Int 2010; 30 (04) 435-442
  • 9 Hochberg MC, Guermazi A, Guehring H. et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: the FORWARD randomized clinical trial. JAMA 2019; 322 (14) 1360-1370
  • 10 Gühring HKJ, Moreau F, Daelken B. et al. Cartilage thickness modification with sprifermin in knee osteoarthritis patients translates into symptomatic improvement over placebo in patients at risk of further structural and symptomatic progression: post-hoc analysis of a phase II trial. Ann Rheum Dis 2019; 78: 70-71
  • 11 Cain EL, Clancy WG. Treatment algorithm for osteochondral injuries of the knee. Clin Sports Med 2001; 20 (02) 321-342
  • 12 Heiss R, Janka R, Uder M, Nagel AM, Trattnig S, Roemer FW. Update cartilage imaging of the small joints: Focus on high-field MRI. [in German]. Radiologe 2019; 59 (08) 732-741
  • 13 Blackman AJ, Smith MV, Flanigan DC, Matava MJ, Wright RW, Brophy RH. Correlation between magnetic resonance imaging and clinical outcomes after cartilage repair surgery in the knee: a systematic review and meta-analysis. Am J Sports Med 2013; 41 (06) 1426-1434
  • 14 de Windt TS, Welsch GH, Brittberg M. et al. Correlation between magnetic resonance imaging and clinical outcomes after knee cartilage repair: letter to the editor. Am J Sports Med 2013; 41 (11) NP48-NP50
  • 15 Marlovits S, Singer P, Zeller P, Mandl I, Haller J, Trattnig S. Magnetic resonance observation of cartilage repair tissue (MOCART) for the evaluation of autologous chondrocyte transplantation: determination of interobserver variability and correlation to clinical outcome after 2 years. Eur J Radiol 2006; 57 (01) 16-23
  • 16 Welsch GH, Zak L, Mamisch TC, Resinger C, Marlovits S, Trattnig S. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla. Invest Radiol 2009; 44 (09) 603-612
  • 17 Wuennemann F, Rehnitz C, Weber MA. Imaging of the knee following repair of focal articular cartilage lesions. Semin Musculoskelet Radiol 2018; 22 (04) 377-385
  • 18 Weber MA, Wünnemann F, Jungmann PM, Kuni B, Rehnitz C. Modern cartilage imaging of the ankle. Rofo 2017; 189 (10) 945-956
  • 19 Krug R, Stehling C, Kelley DA, Majumdar S, Link TM. Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 2009; 44 (09) 613-618
  • 20 Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 2013; 267 (02) 503-513
  • 21 Rubenstein JD, Li JG, Majumdar S, Henkelman RM. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol 1997; 169 (04) 1089-1096
  • 22 Roemer FW, Kwoh CK, Hannon MJ. et al. Semiquantitative assessment of focal cartilage damage at 3T MRI: a comparative study of dual echo at steady state (DESS) and intermediate-weighted (IW) fat suppressed fast spin echo sequences. Eur J Radiol 2011; 80 (02) e126-e131
  • 23 Mohr A. The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 2003; 32 (07) 396-402
  • 24 Binks DA, Hodgson RJ, Ries ME. et al. Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 2013; 86 (1023): 20120163
  • 25 Kretzschmar M, Nevitt MC, Schwaiger BJ, Joseph GB, McCulloch CE, Link TM. Spatial distribution and temporal progression of T2 relaxation time values in knee cartilage prior to the onset of cartilage lesions—data from the Osteoarthritis Initiative (OAI). Osteoarthritis Cartilage 2019; 27 (05) 737-745
  • 26 Alparslan B, Ozkan I, Acar U, Cullu E, Savk SO. The microfracture technique in the treatment of full-thickness chondral lesions of the knee. [in Turkish]. Acta Orthop Traumatol Turc 2007; 41 (Suppl. 02) 62-69
  • 27 Chalian M, Li X, Guermazi A. et al; RSNA QIBA MSK Biomarker Committee, SNA QIBA MSK Biomarker Committee Members. The QIBA profile for MRI-based compositional imaging of knee cartilage. Radiology 2021; 301 (02) 423-432
  • 28 Baum T, Joseph GB, Karampinos DC, Jungmann PM, Link TM, Bauer JS. Cartilage and meniscal T2 relaxation time as non-invasive biomarker for knee osteoarthritis and cartilage repair procedures. Osteoarthritis Cartilage 2013; 21 (10) 1474-1484
  • 29 Domayer SE, Kutscha-Lissberg F, Welsch G. et al. T2 mapping in the knee after microfracture at 3.0 T: correlation of global T2 values and clinical outcome - preliminary results. Osteoarthritis Cartilage 2008; 16 (08) 903-908
  • 30 Welsch GH, Mamisch TC, Domayer SE. et al. Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures—initial experience. Radiology 2008; 247 (01) 154-161
  • 31 Welsch GH, Mamisch TC, Marlovits S. et al. Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res 2009; 27 (07) 957-963
  • 32 Niethammer TR, Safi E, Ficklscherer A. et al. Graft maturation of autologous chondrocyte implantation: magnetic resonance investigation with T2 mapping. Am J Sports Med 2014; 42 (09) 2199-2204
  • 33 Mosher TJ, Zhang Z, Reddy R. et al. Knee articular cartilage damage in osteoarthritis: analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial. Radiology 2011; 258 (03) 832-842
  • 34 Bae WC, Du J, Bydder GM, Chung CB. Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging 2010; 21 (05) 275-289
  • 35 Nissi MJ, Rieppo J, Töyräs J. et al. T(2) relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage. Osteoarthritis Cartilage 2006; 14 (12) 1265-1271
  • 36 Li X, Pedoia V, Kumar D. et al. Cartilage T1ρ and T2 relaxation times: longitudinal reproducibility and variations using different coils, MR systems and sites. Osteoarthritis Cartilage 2015; 23 (12) 2214-2223
  • 37 Schneider E, NessAiver M, White D. et al. The osteoarthritis initiative (OAI) magnetic resonance imaging quality assurance methods and results. Osteoarthritis Cartilage 2008; 16 (09) 994-1004
  • 38 Balamoody S, Williams TG, Wolstenholme C. et al. Magnetic resonance transverse relaxation time T2 of knee cartilage in osteoarthritis at 3-T: a cross-sectional multicentre, multivendor reproducibility study. Skeletal Radiol 2013; 42 (04) 511-520
  • 39 Roemer FW, Kijowski R, Guermazi A. Editorial: from theory to practice—the challenges of compositional MRI in osteoarthritis research. Osteoarthritis Cartilage 2017; 25 (12) 1923-1925
  • 40 Shiomi T, Nishii T, Myoui A, Yoshikawa H, Sugano N. Influence of knee positions on T2, T*2, and dGEMRIC mapping in porcine knee cartilage. Magn Reson Med 2010; 64 (03) 707-714
  • 41 Hesper T, Hosalkar HS, Bittersohl D. et al. T2* mapping for articular cartilage assessment: principles, current applications, and future prospects. Skeletal Radiol 2014; 43 (10) 1429-1445
  • 42 Mamisch TC, Hughes T, Mosher TJ. et al. T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study. Skeletal Radiol 2012; 41 (03) 287-292
  • 43 Newbould RD, Miller SR, Toms LD. et al. T2* measurement of the knee articular cartilage in osteoarthritis at 3T. J Magn Reson Imaging 2012; 35 (06) 1422-1429
  • 44 Stelzeneder D, Shetty AA, Kim SJ. et al. Repair tissue quality after arthroscopic autologous collagen-induced chondrogenesis (ACIC) assessed via T2* mapping. Skeletal Radiol 2013; 42 (12) 1657-1664
  • 45 Burstein D, Velyvis J, Scott KT. et al. Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 2001; 45 (01) 36-41
  • 46 Kang Y, Choi JY, Yoo HJ, Hong SH, Kang HS. Delayed gadolinium-enhanced MR imaging of cartilage: a comparative analysis of different gadolinium-based contrast agents in an ex vivo porcine model. Radiology 2017; 282 (03) 734-742
  • 47 Rehnitz C, Do T, Klaan B. et al. Feasibility of using half-dose Gd-BOPTA for delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at the knee, compared with standard-dose Gd-DTPA. J Magn Reson Imaging 2020; 51 (01) 144-154
  • 48 Trattnig S, Mamisch TC, Pinker K. et al. Differentiating normal hyaline cartilage from post-surgical repair tissue using fast gradient echo imaging in delayed gadolinium-enhanced MRI (dGEMRIC) at 3 Tesla. Eur Radiol 2008; 18 (06) 1251-1259
  • 49 Kurkijärvi JE, Mattila L, Ojala RO. et al. Evaluation of cartilage repair in the distal femur after autologous chondrocyte transplantation using T2 relaxation time and dGEMRIC. Osteoarthritis Cartilage 2007; 15 (04) 372-378
  • 50 Newbould RD, Miller SR, Upadhyay N. et al. T1-weighted sodium MRI of the articulator cartilage in osteoarthritis: a cross sectional and longitudinal study. PLoS One 2013; 8 (08) e73067
  • 51 Madelin G, Babb J, Xia D. et al. Articular cartilage: evaluation with fluid-suppressed 7.0-T sodium MR imaging in subjects with and subjects without osteoarthritis. Radiology 2013; 268 (02) 481-491
  • 52 Krusche-Mandl I, Schmitt B, Zak L. et al. Long-term results 8 years after autologous osteochondral transplantation: 7 T gagCEST and sodium magnetic resonance imaging with morphological and clinical correlation. Osteoarthritis Cartilage 2012; 20 (05) 357-363
  • 53 Zbýň S, Stelzeneder D, Welsch GH. et al. Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthritis Cartilage 2012; 20 (08) 837-845
  • 54 Trattnig S, Welsch GH, Juras V. et al. 23Na MR imaging at 7 T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 2010; 257 (01) 175-184
  • 55 Gersing AS, Schwaiger BJ, Wortler K, Jungmann PM. Advanced cartilage imaging for detection of cartilage injuries and osteochondral lesions. [in German]. Radiologe 2018; 58 (05) 422-432
  • 56 van Tiel J, Siebelt M, Waarsing JH. et al. CT arthrography of the human knee to measure cartilage quality with low radiation dose. Osteoarthritis Cartilage 2012; 20 (07) 678-685
  • 57 Trattnig S, Winalski CS, Marlovits S, Jurvelin JS, Welsch GH, Potter HG. Magnetic resonance imaging of cartilage repair: a review. Cartilage 2011; 2 (01) 5-26
  • 58 Alparslan L, Winalski CS, Boutin RD, Minas T. Postoperative magnetic resonance imaging of articular cartilage repair. Semin Musculoskelet Radiol 2001; 5 (04) 345-363
  • 59 Choi YS, Potter HG, Chun TJ. MR imaging of cartilage repair in the knee and ankle. Radiographics 2008; 28 (04) 1043-1059
  • 60 Link TM, Mischung J, Wörtler K, Burkart A, Rummeny EJ, Imhoff AB. Normal and pathological MR findings in osteochondral autografts with longitudinal follow-up. Eur Radiol 2006; 16 (01) 88-96
  • 61 Schreiner MM, Raudner M, Marlovits S. et al. The MOCART (Magnetic Resonance Observation of Cartilage Repair Tissue) 2.0 Knee Score and Atlas. Cartilage 2021; 13 (1_Suppl): 571S-587S
  • 62 Roemer FW, Guermazi A, Trattnig S. et al. Whole joint MRI assessment of surgical cartilage repair of the knee: cartilage repair osteoarthritis knee score (CROAKS). Osteoarthritis Cartilage 2014; 22 (06) 779-799
  • 63 Camp CL, Stuart MJ, Krych AJ. Current concepts of articular cartilage restoration techniques in the knee. Sports Health 2014; 6 (03) 265-273
  • 64 Khazzam M. Augmented microfracture: Is this the Holy Grail that we have been searching for in the treatment of cartilage injuries?: Commentary on an article by William D. Stanish, MD, et al.: “Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial.”. J Bone Joint Surg Am 2013; 95 (18) e137
  • 65 Nehrer S, Spector M, Minas T. Histologic analysis of tissue after failed cartilage repair procedures. Clin Orthop Relat Res 1999; (365) 149-162
  • 66 Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR. Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 2009; 37 (10) 2053-2063
  • 67 Campbell AB, Pineda M, Harris JD, Flanigan DC. Return to sport after articular cartilage repair in athletes' knees: a systematic review. Arthroscopy 2016; 32 (04) 651-68.e1
  • 68 Farr J, Cole B, Dhawan A, Kercher J, Sherman S. Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res 2011; 469 (10) 2696-2705
  • 69 Robert H. Chondral repair of the knee joint using mosaicplasty. Orthop Traumatol Surg Res 2011; 97 (04) 418-429
  • 70 Ahmad CS, Cohen ZA, Levine WN, Ateshian GA, Mow VC. Biomechanical and topographic considerations for autologous osteochondral grafting in the knee. Am J Sports Med 2001; 29 (02) 201-206
  • 71 Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331 (14) 889-895
  • 72 Goyal D, Goyal A, Keyhani S, Lee EH, Hui JH. Evidence-based status of second- and third-generation autologous chondrocyte implantation over first generation: a systematic review of level I and II studies. Arthroscopy 2013; 29 (11) 1872-1878
  • 73 Trattnig S, Pinker K, Krestan C, Plank C, Millington S, Marlovits S. Matrix-based autologous chondrocyte implantation for cartilage repair with HyalograftC: two-year follow-up by magnetic resonance imaging. Eur J Radiol 2006; 57 (01) 9-15
  • 74 Trattnig S, Ba-Ssalamah A, Pinker K, Plank C, Vecsei V, Marlovits S. Matrix-based autologous chondrocyte implantation for cartilage repair: noninvasive monitoring by high-resolution magnetic resonance imaging. Magn Reson Imaging 2005; 23 (07) 779-787
  • 75 Hayashi D, Li X, Murakami AM, Roemer FW, Trattnig S, Guermazi A. Understanding magnetic resonance imaging of knee cartilage repair: a focus on clinical relevance. Cartilage 2018; 9 (03) 223-236
  • 76 Barrett I, King AH, Riester S. et al. Internal fixation of unstable osteochondritis dissecans in the skeletally mature knee with metal screws. Cartilage 2016; 7 (02) 157-162
  • 77 Webb JE, Lewallen LW, Christophersen C, Krych AJ, McIntosh AL. Clinical outcome of internal fixation of unstable juvenile osteochondritis dissecans lesions of the knee. Orthopedics 2013; 36 (11) e1444-e1449
  • 78 Filli L, Jud L, Luechinger R. et al. Material-dependent implant artifact reduction using SEMAC-VAT and MAVRIC: a prospective MRI phantom study. Invest Radiol 2017; 52 (06) 381-387