CC BY-NC-ND 4.0 · Yearb Med Inform 2022; 31(01): 131-134
DOI: 10.1055/s-0042-1742521
Section 2: Cancer Informatics

Cancer Informatics 2022: Real-World Data Yields Important Insights into the Conduct of Clinical Trials and Registries

Jeremy L. Warner
1   Section Editors for the IMIA Yearbook Section on Cancer Informatics
2   Associate Professor, Departments of Medicine and Biomedical Informatics, Vanderbilt University, Nashville, TN, USA
Michael K. Rooney
3   Radiation Oncology Resident, MD Anderson Cancer Center, Houston, TX, USA
Debra Patt
1   Section Editors for the IMIA Yearbook Section on Cancer Informatics
4   Vice President, Texas Oncology, Austin, TX, USA
› Institutsangaben


Objective: To summarize significant research contributions on cancer informatics published in 2021.

Methods: An extensive search using PubMed/MEDLINE and Altmetric scores was conducted to identify the scientific contributions published in 2021 that address topics in cancer informatics. The selection process comprised three steps: (i) 15 candidate best papers were first selected by the two section editors, (ii) external reviewers from internationally renowned research teams reviewed each candidate best paper, and (iii) the final selection of two best papers was conducted by the editorial board of the IMIA Yearbook.

Results: The two selected best papers demonstrate some of the promises and shortcomings of real-world data.

Conclusion: Cancer informatics is a maturing subfield of biomedical informatics. Applications of informatics methods to real-world data are especially notable in 2021.


Artikel online veröffentlicht:
04. Dezember 2022

© 2022. IMIA and Thieme. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

  • References

  • 1 Chaunzwa TL, Quiles del Rey M, Bitterman DS. Clinical Informatics Approaches to Understand and Address Cancer Disparities. Yearb Med Inform 2022:121-30.
  • 2 Ram K. rAltmetric: Retrieves altmetrics data for any published paper from R package version 0.7. Available from:
  • 3 Galligan F, Dyas-Correia S. Altmetrics: Rethinking the Way We Measure. Serials Review 2013 Mar;39(1):56–61.
  • 4 Lamy JB, Séroussi B, Griffon N, Kerdelhué G, Jaulent MC, Bouaud J. Toward a formalization of the process to select IMIA Yearbook best papers. Methods Inf Med 2015;54(2):135-44.
  • 5 Liu R, Rizzo S, Whipple S, Pal N, Pineda AL, Lu M, et al. Evaluating eligibility criteria of oncology trials using real-world data and AI. Nature 2021 Apr;592(7855):629-33.
  • 6 Riaz IB, Islam M, Khan AM, Naqvi SAA, Siddiqi R, Khakwani KZR, et al. Disparities in Representation of Women, Older Adults, and Racial/Ethnic Minorities in Immune Checkpoint Inhibitor Trials. Am J Med 2022 Apr 25:S0002-9343(22)00328-X.
  • 7 Yang DX, Khera R, Miccio JA, Jairam V, Chang E, Yu JB, et al. Prevalence of Missing Data in the National Cancer Database and Association With Overall Survival. JAMA Netw Open 2021 Mar 1;4(3):e211793.
  • 8 Boffa DJ, Rosen JE, Mallin K, Loomis A, Gay G, Palis B, et al. Using the National Cancer Database for Outcomes Research: A Review. JAMA Oncol 2017 Dec 1;3(12):1722-8.
  • 9 Awasthi S, Berglund A, Abraham-Miranda J, Rounbehler RJ, Kensler K, Serna A, et al. Comparative Genomics Reveals Distinct Immune-oncologic Pathways in African American Men with Prostate Cancer. Clin Cancer Res 2021 Jan 1;27(1):320-9.
  • 10 Warnat-Herresthal S, Schultze H, Shastry KL, Manamohan S, Mukherjee S, Garg V, et al. Swarm Learning for decentralized and confidential clinical machine learning. Nature 2021 Jun;594(7862):265-70.
  • 11 Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, et al. Conserved pan-cancer microenvironment subtypes predict response to immunotherapy. Cancer Cell 2021 Jun 14;39(6):845-65.e7.
  • 12 Cheng F, Zhao J, Wang Y, Lu W, Liu Z, Zhou Y, et al. Comprehensive characterization of protein-protein interactions perturbed by disease mutations. Nat Genet 2021 Mar;53(3):342-53.
  • 13 Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J, Deshwar AG, et al; PCAWG Evolution and Heterogeneity Working Group and the PCAWG Consortium. Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell 2021 Apr 15;184(8):2239-54.e39.
  • 14 Hu J, Li X, Coleman K, Schroeder A, Ma N, Irwin DJ, et al. SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat Methods 2021 Nov;18(11):1342-51.
  • 15 Scott JG, Sedor G, Ellsworth P, Scarborough JA, Ahmed KA, Oliver DE, et al. Pan-cancer prediction of radiotherapy benefit using genomic-adjusted radiation dose (GARD): a cohort-based pooled analysis. Lancet Oncol 2021 Sep;22(9):1221-9.
  • 16 Cantini L, Zakeri P, Hernandez C, Naldi A, Thieffry D, Remy E, et al. Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer. Nat Commun 2021 Jan 5;12(1):124.
  • 17 Absolom K, Warrington L, Hudson E, Hewison J, Morris C, Holch P, et al. Phase III Randomized Controlled Trial of eRAPID: eHealth Intervention During Chemotherapy. J Clin Oncol 2021 Mar 1;39(7):734-47.
  • 18 Gould MK, Huang BZ, Tammemagi MC, Kinar Y, Shiff R. Machine Learning for Early Lung Cancer Identification Using Routine Clinical and Laboratory Data. Am J Respir Crit Care Med 2021 Aug 15;204(4):445-53.
  • 19 Zhou Q, Zuley M, Guo Y, Yang L, Nair B, Vargo A, et al. A machine and human reader study on AI diagnosis model safety under attacks of adversarial images. Nat Commun 2021 Dec 14;12(1):7281.
  • 20 Do RKG, Lupton K, Causa Andrieu PI, Luthra A, Taya M, Batch K, et al. Patterns of Metastatic Disease in Patients with Cancer Derived from Natural Language Processing of Structured CT Radiology Reports over a 10-year Period. Radiology 2021 Oct;301(1):115-22.
  • 21 Mendiratta G, Ke E, Aziz M, Liarakos D, Tong M, Stites EC. Cancer gene mutation frequencies for the U.S. population. Nat Commun 2021 Oct 13;12(1):5961.