CC BY-NC-ND 4.0 · Journal of Gastrointestinal and Abdominal Radiology 2022; 05(02): 094-106
DOI: 10.1055/s-0042-1742432
Review Article

Dual-Energy Computed Tomography in Diffuse Liver Diseases

Uday Kumar Marri
1   Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
,
Kumble Seetharama Madhusudhan
1   Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
› Author Affiliations

Abstract

Dual-energy computed tomography (DECT) is an advancement in the field of CT, where images are acquired at two energies. Materials are identified and quantified based on their attenuation pattern at two different energy beams using various material decomposition algorithms. With its ability to identify and quantify materials such as fat, calcium, iron, and iodine, DECT adds great value to conventional CT and has innumerable applications in body imaging. Continuous technological advances in CT scanner hardware, material decomposition algorithms, and image reconstruction software have led to considerable growth of these applications. Among all organs, the liver is the most widely investigated by DECT, and DECT has shown promising results in most liver applications. In this article, we aim to provide an overview of the role of DECT in the assessment of diffuse liver diseases, mainly the deposition of fat, fibrosis, and iron and review the most relevant literature.



Publication History

Article published online:
08 February 2022

© 2022. Indian Society of Gastrointestinal and Abdominal Radiology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol 1973; 46 (552) 1016-1022
  • 2 Flohr TG, McCollough CH, Bruder H. et al. First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 2006; 16 (02) 256-268
  • 3 Sebastiani G. Non-invasive assessment of liver fibrosis in chronic liver diseases: implementation in clinical practice and decisional algorithms. World J Gastroenterol 2009; 15 (18) 2190-2203
  • 4 Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med 2001; 344 (07) 495-500
  • 5 Baranova A, Lal P, Birerdinc A, Younossi ZM. Non-invasive markers for hepatic fibrosis. BMC Gastroenterol 2011; 11: 91
  • 6 Chin JL, Pavlides M, Moolla A, Ryan JD. Non-invasive markers of liver fibrosis: adjuncts or alternatives to liver biopsy?. Front Pharmacol 2016; 7: 159 https://www.frontiersin.org/articles/10.3389/fphar.2016.00159/full cited 2020May10 [Internet]
  • 7 Olson MC, Reeder SB, Venkatesh SK. Quantitative MRI biomarkers of diffuse liver disease. Adv Clin Radiol. 2019; 1: 55-69
  • 8 Curtis WA, Fraum TJ, An H, Chen Y, Shetty AS, Fowler KJ. Quantitative MRI of diffuse liver disease: current applications and future directions. Radiology 2019; 290 (01) 23-30
  • 9 Bannas P, Kramer H, Hernando D. et al. Quantitative magnetic resonance imaging of hepatic steatosis: validation in ex vivo human livers. Hepatology 2015; 62 (05) 1444-1455
  • 10 Rutherford RA, Pullan BR, Isherwood I. Measurement of effective atomic number and electron density using an EMI scanner. Neuroradiology 1976; 11 (01) 15-21
  • 11 Kruger RA, Riederer SJ, Mistretta CA. Relative properties of tomography, K-edge imaging, and K-edge tomography. Med Phys 1977; 4 (03) 244-249
  • 12 Lamb P, Sahani DV, Fuentes-Orrego JM, Patino M, Ghosh A, Mendonça PRS. Stratification of patients with liver fibrosis using dual-energy CT. IEEE Trans Med Imaging 2015; 34 (03) 807-815
  • 13 McCollough CH, Leng S, Yu L, Fletcher JG. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 2015; 276 (03) 637-653
  • 14 Patino M, Prochowski A, Agrawal MD. et al. Material separation using dual-energy CT: current and emerging applications. Radiographics 2016; 36 (04) 1087-1105
  • 15 Wilkins T, Tadkod A, Hepburn I, Schade RR. Nonalcoholic fatty liver disease: diagnosis and management. Am Fam Physician 2013; 88 (01) 35-42
  • 16 Fuster D, Samet JH. Alcohol use in patients with chronic liver disease. N Engl J Med 2018; 379 (13) 1251-1261
  • 17 Abenavoli L, Masarone M, Peta V. et al. Insulin resistance and liver steatosis in chronic hepatitis C infection genotype 3. World J Gastroenterol 2014; 20 (41) 15233-15240
  • 18 Shigefuku R, Takahashi H, Nakano H. et al. Correlations of hepatic hemodynamics, liver function, and fibrosis markers in nonalcoholic fatty liver disease: comparison with chronic hepatitis related to hepatitis C virus. Int J Mol Sci 2016; 17 (09) E1545 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5037819/ cited 2021Jun13 [Internet]
  • 19 Satapathy SK, Kuwajima V, Nadelson J, Atiq O, Sanyal AJ. Drug-induced fatty liver disease: an overview of pathogenesis and management. Ann Hepatol 2015; 14 (06) 789-806
  • 20 Ogawa Y, Murata Y, Nishioka A, Inomata T, Yoshida S. Tamoxifen-induced fatty liver in patients with breast cancer. Lancet 1998; 351 (9104): 725
  • 21 Wakatsuki A, Ogawa Y, Saibara T, Okatani Y, Fukaya T. Size and oxidative susceptibility of low-density lipoprotein particles in breast cancer patients with tamoxifen-induced fatty liver. 6
  • 22 Woods CP, Hazlehurst JM, Tomlinson JW. Glucocorticoids and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 2015; 154: 94-103
  • 23 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64 (01) 73-84
  • 24 Marchesini G, Bugianesi E, Forlani G. et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37 (04) 917-923
  • 25 Alberti KGMM, Eckel RH, Grundy SM. et al; International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart, Lung, and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120 (16) 1640-1645
  • 26 Caldwell SH, Crespo DM. The spectrum expanded: cryptogenic cirrhosis and the natural history of non-alcoholic fatty liver disease. J Hepatol 2004; 40 (04) 578-584
  • 27 d'Assignies G, Fayard C, Leitao H. et al. Liver steatosis assessed by preoperative MRI: an independent risk factor for severe complications after major hepatic resection. Surgery 2016; 159 (04) 1050-1057
  • 28 Degasperi E, Colombo M. Distinctive features of hepatocellular carcinoma in non-alcoholic fatty liver disease. Lancet Gastroenterol Hepatol 2016; 1 (02) 156-164
  • 29 Majumdar A, Verbeek J, Tsochatzis EA. Non-alcoholic fatty liver disease: Current therapeutic options. Curr Opin Pharmacol 2021; 61: 98-105
  • 30 Ferraioli G, Soares Monteiro LB. Ultrasound-based techniques for the diagnosis of liver steatosis. World J Gastroenterol 2019; 25 (40) 6053-6062
  • 31 Kramer H, Pickhardt PJ, Kliewer MA. et al. Accuracy of liver fat quantification with advanced CT, MRI, and ultrasound techniques: prospective comparison with MR spectroscopy. Am J Roentgenol 2017; 208 (01) 92-100
  • 32 Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging 2012; 36 (05) 1011-1014
  • 33 Petta S, Maida M, Macaluso FS. et al. The severity of steatosis influences liver stiffness measurement in patients with nonalcoholic fatty liver disease. Hepatology 2015; 62 (04) 1101-1110
  • 34 Sasso M, Miette V, Sandrin L, Beaugrand M. The controlled attenuation parameter (CAP): a novel tool for the non-invasive evaluation of steatosis using Fibroscan. Clin Res Hepatol Gastroenterol 2012; 36 (01) 13-20
  • 35 Kumar M, Rastogi A, Singh T. et al. Controlled attenuation parameter for non-invasive assessment of hepatic steatosis: does etiology affect performance?. J Gastroenterol Hepatol 2013; 28 (07) 1194-1201
  • 36 Zhang YN, Fowler KJ, Hamilton G. et al. Liver fat imaging-a clinical overview of ultrasound, CT, and MR imaging. Br J Radiol 2018; 91 (1089): 20170959
  • 37 Li Q, Dhyani M, Grajo JR, Sirlin C, Samir AE. Current status of imaging in nonalcoholic fatty liver disease. World J Hepatol 2018; 10 (08) 530-542
  • 38 Sagir Kahraman A, Karakas HM, Kirimlioglu H, Kahraman B, Yilmaz S, Kirimlioglu V. The assessment of hepatosteatosis in living-donor liver transplant: comparison of liver attenuation index and histopathologic results. Exp Clin Transplant 2017; 15 (01) 69-77
  • 39 Park SH, Kim PN, Kim KW. et al. Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiology 2006; 239 (01) 105-112
  • 40 Lee SW, Park SH, Kim KW. et al. Unenhanced CT for assessment of macrovesicular hepatic steatosis in living liver donors: comparison of visual grading with liver attenuation index. Radiology 2007; 244 (02) 479-485
  • 41 Iwasaki M, Takada Y, Hayashi M. et al. Noninvasive evaluation of graft steatosis in living donor liver transplantation. Transplantation 2004; 78 (10) 1501-1505
  • 42 Bohte AE, van Werven JR, Bipat S, Stoker J. The diagnostic accuracy of US, CT, MRI and 1H-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol 2011; 21 (01) 87-97
  • 43 Mendler MH, Bouillet P, Le Sidaner A. et al. Dual-energy CT in the diagnosis and quantification of fatty liver: limited clinical value in comparison to ultrasound scan and single-energy CT, with special reference to iron overload. J Hepatol 1998; 28 (05) 785-794
  • 44 Hyodo T, Yada N, Hori M. et al. Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: clinical evaluation. Radiology 2017; 283 (01) 108-118
  • 45 Corrias G, Erta M, Sini M. et al. Comparison of multimaterial decomposition fat fraction with DECT and proton density fat fraction with IDEAL IQ MRI for quantification of liver steatosis in a population exposed to chemotherapy. Dose Response 2021; 19 (02) 1559325820984938
  • 46 Patel BN, Kumbla RA, Berland LL, Fineberg NS, Morgan DE. Material density hepatic steatosis quantification on intravenous contrast-enhanced rapid kilovolt (peak)-switching single-source dual-energy computed tomography. J Comput Assist Tomogr 2013; 37 (06) 904-910
  • 47 Artz NS, Hines CDG, Brunner ST. et al. Quantification of hepatic steatosis with dual-energy computed tomography: comparison with tissue reference standards and quantitative magnetic resonance imaging in the ob/ob mouse. Invest Radiol 2012; 47 (10) 603-610
  • 48 Sun T, Lin X, Chen K. Evaluation of hepatic steatosis using dual-energy CT with MR comparison. Front Biosci 2014; 19: 1377-1385
  • 49 Hur BY, Lee JM, Hyunsik W. et al. Quantification of the fat fraction in the liver using dual-energy computed tomography and multimaterial decomposition. J Comput Assist Tomogr 2014; 38 (06) 845-852
  • 50 Noh H, Song X, Heo S. et al. Comparative study of ultrasonography, computed tomography, magnetic resonance imaging, and magnetic resonance spectroscopy for the diagnosis of fatty liver in a rat model. J Korean Soc Radiol 2017; 76: 14
  • 51 Wang Q, Shi G, Qi X, Fan X, Wang L. Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization. Eur J Radiol 2014; 83 (10) 1759-1764
  • 52 Ma J, Song Z-Q, Yan F-H. Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study. PLoS One 2014; 9 (10) e110964
  • 53 Cao Q, Shang S, Han X, Cao D, Zhao L. Evaluation on heterogeneity of fatty liver in rats: a multiparameter quantitative analysis by dual energy CT. Acad Radiol 2019; 26 (05) e47-e55
  • 54 Toepker M, Moritz T, Krauss B. et al. Virtual non-contrast in second-generation, dual-energy computed tomography: reliability of attenuation values. Eur J Radiol 2012; 81 (03) e398-e405
  • 55 De Cecco CN, Darnell A, Macías N. et al. Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Invest Radiol 2013; 48 (01) 1-9
  • 56 De Cecco CN, Buffa V, Fedeli S. et al. Dual energy CT (DECT) of the liver: conventional versus virtual unenhanced images. Eur Radiol 2010; 20 (12) 2870-2875
  • 57 Sahni VA, Shinagare AB, Silverman SG. Virtual unenhanced CT images acquired from dual-energy CT urography: accuracy of attenuation values and variation with contrast material phase. Clin Radiol 2013; 68 (03) 264-271
  • 58 Schuppan D, Afdhal NH. Liver cirrhosis. Lancet 2008; 371 (9615): 838-851
  • 59 Friedman SL. Liver fibrosis – from bench to bedside. J Hepatol 2003; 38 (Suppl. 01) S38-S53
  • 60 Barr RG, Ferraioli G, Palmeri ML. et al. Elastography assessment of liver fibrosis: Society of Radiologists in Ultrasound Consensus Conference Statement. Radiology 2015; 276 (03) 845-861
  • 61 Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C. Liver Fibrosis Study Group. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology 2012; 56 (06) 2125-2133
  • 62 Sandrin L, Fourquet B, Hasquenoph JM. et al. Transient elastography: a new noninvasive method for assessment of hepatic fibrosis. Ultrasound Med Biol 2003; 29 (12) 1705-1713
  • 63 Huwart L, Sempoux C, Vicaut E. et al. Magnetic resonance elastography for the noninvasive staging of liver fibrosis. Gastroenterology 2008; 135 (01) 32-40
  • 64 Guo SL, Su LN, Zhai YN. et al. The clinical value of hepatic extracellular volume fraction using routine multiphasic contrast-enhanced liver CT for staging liver fibrosis. Clin Radiol 2017; 72 (03) 242-246
  • 65 Yoon JH, Lee LM, Klotz E, Jeon JH, Lee KB, Han JK. et al. Estimation of hepatic extracellular volume fraction using multiphasic liver computed tomography for hepatic fibrosis grading. Invest Radiol 2015; 50 (04) 290-296
  • 66 Bandula S, Punwani S, Rosenberg WM. et al. Equilibrium contrast-enhanced CT imaging to evaluate hepatic fibrosis: initial validation by comparison with histopathologic sampling. Radiology 2015; 275 (01) 136-143
  • 67 Zissen MH, Wang ZJ, Yee J, Aslam R, Monto A, Yeh BM. Contrast-enhanced CT quantification of the hepatic fractional extracellular space: correlation with diffuse liver disease severity. Am J Roentgenol 2013; 201 (06) 1204-1210
  • 68 Marri UK, Das P, Shalimar. Kalaivani M, Srivastava DN, Madhusudhan KS. Noninvasive staging of liver fibrosis using 5-minute delayed dual-energy CT: comparison with US elastography and correlation with histologic findings. Radiology 2021; 298 (03) 600-608
  • 69 Lv P, Lin X, Gao J, Chen K. Spectral CT: preliminary studies in the liver cirrhosis. Korean J Radiol 2012; 13 (04) 434-442
  • 70 Fuentes J, Patino M, Hayano K, Andrabi Y, Agrawal M, Sahani D. Detection and stratification of liver fibrosis using dual energy CT (DECT) [Internet]. Scientific papers, Radiological Society of North America 2014 Scientific Assembly and Annual Meeting. 2014 [cited 2018 Dec 2]. Available at: http://archive.rsna.org/2014/14015323.html
  • 71 Sofue K, Tsurusaki M, Mileto A. et al. Dual-energy computed tomography for non-invasive staging of liver fibrosis: Accuracy of iodine density measurements from contrast-enhanced data. Hepatol Res 2018; 48 (12) 1008-1019
  • 72 Hilgard P, Gerken G. Liver cirrhosis as a consequence of iron overload caused by hereditary nonspherocytic hemolytic anemia. World J Gastroenterol 2005; 11 (08) 1241-1244
  • 73 Batts KP. Iron overload syndromes and the liver. Mod Pathol 2007; 20 (01, Suppl 1): S31-S39
  • 74 Abergel A, Ruivard M, Bonny C. [Iron overload and chronic liver diseases]. Rev Prat 2006; 56 (19) 2130-2134
  • 75 Milic S, Mikolasevic I, Orlic L. et al. The Role of Iron and Iron Overload in Chronic Liver Disease. Med Sci Monit 2016; 22: 2144-2151
  • 76 Ganne-Carrié N, Christidis C, Chastang C. et al. Liver iron is predictive of death in alcoholic cirrhosis: a multivariate study of 229 consecutive patients with alcoholic and/or hepatitis C virus cirrhosis: a prospective follow up study. Gut 2000; 46 (02) 277-282
  • 77 Henninger B, Alustiza J, Garbowski M, Gandon Y. Practical guide to quantification of hepatic iron with MRI. Eur Radiol 2020; 30 (01) 383-393
  • 78 Labranche R, Gilbert G, Cerny M. et al. Liver iron quantification with MR imaging: a primer for radiologists. Radiographics 2018; 38 (02) 392-412
  • 79 Joe E, Kim SH, Lee KB. et al. Feasibility and accuracy of dual-source dual-energy CT for noninvasive determination of hepatic iron accumulation. Radiology 2012; 262 (01) 126-135
  • 80 Luo XF, Xie XQ, Cheng S. et al. Dual-energy CT for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content?. Radiology 2015; 277 (01) 95-103
  • 81 Werner S, Krauss B, Haberland U. et al. Dual-energy CT for liver iron quantification in patients with haematological disorders. Eur Radiol 2019; 29 (06) 2868-2877
  • 82 Fischer MA, Reiner CS, Raptis D. et al. Quantification of liver iron content with CT-added value of dual-energy. Eur Radiol 2011; 21 (08) 1727-1732
  • 83 Peng Y, Ye J, Liu C. et al. Simultaneous hepatic iron and fat quantification with dual-energy CT in a rabbit model of coexisting iron and fat. Quant Imaging Med Surg 2021; 11 (05) 2001-2012
  • 84 Fischer MA, Gnannt R, Raptis D. et al. Quantification of liver fat in the presence of iron and iodine: an ex-vivo dual-energy CT study. Invest Radiol 2011; 46 (06) 351-358
  • 85 Hyodo T, Hori M, Lamb P. et al. Multimaterial decomposition algorithm for the quantification of liver fat content by using fast-kilovolt-peak switching dual-energy CT: experimental validation. Radiology 2017; 282 (02) 381-389
  • 86 Xie T, Li Y, He G, Zhang Z, Shi Q, Cheng G. The influence of liver fat deposition on the quantification of the liver-iron fraction using fast-kilovolt-peak switching dual-energy CT imaging and material decomposition technique: an in vitro experimental study. Quant Imaging Med Surg 2019; 9 (04) 654-661
  • 87 Zheng X, Ren Y, Phillips WT. et al. Assessment of hepatic fatty infiltration using spectral computed tomography imaging: a pilot study. J Comput Assist Tomogr 2013; 37 (02) 134-141
  • 88 Basso L, Baldi D, Mannelli L, Cavaliere C, Salvatore M, Brancato V. Investigating dual-energy CT post-contrast phases for liver iron quantification: a preliminary study. Dose Response 2021;19(02):15593258211011359
  • 89 Foley WD, Shuman WP, Siegel MJ. et al. White Paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, Part 2: radiation dose and iodine sensitivity. J Comput Assist Tomogr 2016; 40 (06) 846-850
  • 90 Purysko AS, Primak AN, Baker ME. et al. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol 2014; 69 (12) e538-e544
  • 91 Kulkarni NM, Pinho DF, Kambadakone AR, Sahani DV. Emerging technologies in CT- radiation dose reduction and dual-energy CT. Semin Roentgenol 2013; 48 (03) 192-202
  • 92 Jepperson MA, Cernigliaro JG, Ibrahim SH, Morin RL, Haley WE, Thiel DD. In vivo comparison of radiation exposure of dual-energy CT versus low-dose CT versus standard CT for imaging urinary calculi. J Endourol 2015; 29 (02) 141-146
  • 93 Henzler T, Fink C, Schoenberg SO, Schoepf UJ. Dual-energy CT: radiation dose aspects. AJR Am J Roentgenol 2012; 199 (5, Suppl) S16-S25
  • 94 Martínez-Esparza M, Tristán-Manzano M, Ruiz-Alcaraz AJ, García-Peñarrubia P. Inflammatory status in human hepatic cirrhosis. World J Gastroenterol 2015; 21 (41) 11522-11541
  • 95 Marra F. Chemokines in liver inflammation and fibrosis. Front Biosci 2002; 7: d1899-d1914
  • 96 Wang HJ, Gao B, Zakhari S, Nagy LE. Inflammation in alcoholic liver disease. Annu Rev Nutr 2012; 32: 343-368
  • 97 Gao B, Tsukamoto H. Inflammation in alcoholic and nonalcoholic fatty liver disease: friend or foe?. Gastroenterology 2016; 150 (08) 1704-1709
  • 98 Yeh MM, Brunt EM. Pathology of nonalcoholic fatty liver disease. Am J Clin Pathol 2007; 128 (05) 837-847
  • 99 Takahashi Y, Fukusato T. Histopathology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 2014; 20 (42) 15539-15548
  • 100 Parthasarathy G, Revelo X, Malhi H. Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun 2020; 4 (04) 478-492
  • 101 Schuster S, Cabrera D, Arrese M, Feldstein AE. Triggering and resolution of inflammation in NASH. Nat Rev Gastroenterol Hepatol 2018; 15 (06) 349-364
  • 102 Farrell GC, van Rooyen D, Gan L, Chitturi S. NASH is an inflammatory disorder: pathogenic, prognostic and therapeutic Implications. Gut Liver 2012; 6 (02) 149-171