CC BY-NC-ND 4.0 · Arquivos Brasileiros de Neurocirurgia: Brazilian Neurosurgery 2022; 41(02): e108-e136
DOI: 10.1055/s-0042-1742299
Original Article

Prognosis in Traumatic Brain Injury

Indicadores prognósticos no trauma cranioencefálico
1   Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
,
2   Department of Neurosurgery, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
3   Department of Neurosurgery, Hospital Regional de São José Dr. Homero de Miranda Gomes, São José, SC, Brazil
,
3   Department of Neurosurgery, Hospital Regional de São José Dr. Homero de Miranda Gomes, São José, SC, Brazil
,
4   Department of Neurosurgery, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil
,
4   Department of Neurosurgery, Hospital Governador Celso Ramos, Florianópolis, SC, Brazil
5   Department of Neurosurgery, Hospital Infantil Joana de Gusmão, Florianópolis, SC, Brazil
› Author Affiliations

Abstract

Objective To characterize the profile of TBI victims who required neurosurgical approach in two reference hospitals in the metropolitan area of Florianópolis, state of Santa Catarina, Brazil, and to identify the prognostic increase in the Pupil Reactivity Score when subtracted from the Glasgow Coma Score, found in the Glasgow-P. Additionally, to present demographic, etiological, clinical, and tomographic data, and associate them with the outcome of death.

Methods Medical record data and computed tomography (CT) scans of patients with TBI undergoing neurosurgical procedures from January 2014 to April 2019, at 2 reference hospitals in the metropolitan area of Florianópolis, state of Santa Catarina, Brazil – Hospital Regional de São José Dr. Homero de Miranda Gomes (HRSJ-HMG, in the Portuguese acronym) and Hospital Governador Celso Ramos (HGCR, in the Portuguese acronym).

Results The results of the 318 cases studied indicated that the male gender predominated (87.7%). The most affected age group was between 35 and 65 years old (47.5%). The main cause was motorcycle accidents (26.1%), followed by a fall from a height (16.4%). Most patients required admission to the intensive care unit (ICU) (85.8%), with an average duration of 13 days. The average total hospital stay was 28 days. Most cases needed external ventricular drain (EVD) (64.8%). The predominant tomographic classification was Marshall II (43.4%), followed by Marshall IV (26.1%). Most patients presented with extra-axial hematoma (64.2%), with subdural hematoma (SDH) being the most frequent (45%). Most patients presented with sequelae at hospital discharge (43.4%).

Conclusion There was no clinically relevant increase between the Glasgow and Glasgow-P scores for the tested outcomes (need for decompressive craniectomy, midline shift, presence of basal cisterns obliteration, need for ICU admission, and death).

Resumo

Objetivos Caracterizar o perfil das vítimas de trauma cranioencefálico (TCE) que necessitaram de abordagem neurocirúrgica em dois hospitais de referência na Grande Florianópolis, SC, Brasil, e identificar o incremento prognóstico do Escore de Reatividade Pupilar quando subtraído do Escore de Coma de Glasgow, resultando no Glasgow-P. Ademais, apresentar dados demográficos, etiológicos, clínicos e tomográficos, e associá-los ao desfecho óbito.

Métodos Foram analisados dados de prontuários e exames tomográficos de pacientes com TCE submetidos a procedimentos neurocirúrgicos no período de janeiro de 2014 a abril de 2019, em 2 hospitais de referência na Grande Florianópolis – Hospital Regional de São José Dr. Homero de Miranda Gomes (HRSJ-HMG) e Hospital Governador Celso Ramos (HGCR).

Resultados Para os 318 casos analisados, os resultados mostraram que o sexo masculino predominou (87,7%). A faixa etária mais acometida foi de 35 a 65 anos (47,5%). A principal causa foi acidente motociclístico (26,1%), seguido por queda de nível (16,4%). A maioria dos pacientes necessitou de internação na unidade de tratamento intensive (UTI) (85,8%), com duração média de 13 dias. O tempo médio total de internação hospitalar foi de 28 dias. Houve necessidade de derivação ventricular externa (DVE) na maior parte dos casos (64,8%). A classificação tomográfica predominante foi Marshall II (43,4%), seguida pelo Marshall IV (26,1%). A maioria dos pacientes apresentou hematoma extra-axial (64,2%), sendo o hematoma subdural (HSD) o mais frequente (45%). A maoria dos pacientes apresentou sequelas na alta hospitalar (43,4%).

Conclusão Não houve um incremento clinicamente relevante entre os escores Glasgow e Glasgow-P para os desfechos testados (necessidade craniectomia descompressiva, desvio da linha média (DLM), presença de obliteração de cisternas basais, necessidade de internação em UTI e óbito).

Institutions in Which the Present Work was Performed

Hospital Regional de São José Doutor Homero de Miranda Gomes (HRSJ-HMG).


Hospital Governador Celso Ramos (HGCR).




Publication History

Received: 19 August 2021

Accepted: 13 October 2021

Article published online:
09 February 2022

© 2022. Sociedade Brasileira de Neurocirurgia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Centers for Disease Control and Prevention. Surveillance Report of Traumatic Brain Injury-related Emergency Department Visits, Hospitalizations, and Deaths – United States, 2014. U.S. Department of Health and Human Services; 2019. . Available in: https://www.cdc.gov/traumaticbraininjury/basics.html
  • 2 World Health Organization. Neurological disorders: a public health approach. Chapter 3.6, Neurological disorders associated with malnutrition. 2006 . Available in: https://www.who.int/mental_health/neurology/chapter_3_b_neuro_disorders_public_h_challenges.pdf?ua=1
  • 3 Langlois JA. Traumatic brain injury in the United States: research and programs of the Centers for Disease Control and Prevention (CDC). J. Head Trauma Rehabil [Internet]. 2005 [citado em 2021];20(3):187–188. Available in: https://journals.lww.com/headtraumarehab/Fulltext/2005/05000/Preface.1.aspx
  • 4 Olesen J, Gustavsson A, Svensson M, Wittchen HU, Jönsson B. CDBE2010 study group, European Brain Council. The economic cost of brain disorders in Europe. Eur J Neurol 2012; 19 (01) 155-162
  • 5 Finkelstein EA, Corso PS, Miller TR. Incidence and economic burden of injuries in the United States. Oxford: Oxford University Press; 2006
  • 6 Maas AIR, Menon DK, Adelson PD. et al; InTBIR Participants and Investigators. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol 2017; 16 (12) 987-1048
  • 7 Ministério da Saúde (BR). Departamento de Informática do SUS - DATASUS. Sistema de Informações Hospitalares – SIH. Brasília: Ministério da Saúde; 2020 . Available in: http://www2.datasus.gov.br/
  • 8 Perel P, Arango M, Clayton T. et al; MRC CRASH Trial Collaborators. Predicting outcome after traumatic brain injury: practical prognostic models based on large cohort of international patients. BMJ 2008; 336 (7641): 425-429
  • 9 Martins ET, Linhares MN, Sousa DS. et al. Mortality in severe traumatic brain injury: a multivariated analysis of 748 Brazilian patients from Florianópolis City. J Trauma 2009; 67 (01) 85-90
  • 10 Areas FZ, Schwarzbold ML, Diaz AP. et al. Predictors of Hospital Mortality and the Related Burden of Disease in Severe Traumatic Brain Injury: A Prospective Multicentric Study in Brazil. Front Neurol 2019; 10: 432
  • 11 Steyerberg EW, Mushkudiani N, Perel P. et al. Predicting outcome after traumatic brain injury: development and international validation of prognostic scores based on admission characteristics. PLoS Med 2008; 5 (08) e165 , discussion e165
  • 12 Marmarou A, Lu J, Butcher I. et al. IMPACT database of traumatic brain injury: design and description. J Neurotrauma 2007; 24 (02) 239-250
  • 13 Brennan PM, Murray GD, Teasdale GM. Simplifying the use of prognostic information in traumatic brain injury. Part 1: The GCS-Pupils score: an extended index of clinical severity. J Neurosurg 2018; 128 (06) 1612-1620
  • 14 Marshall LF, Gautille T, Klauber MR. et al. The outcome of severe closed head injury. J Neurosurg 1991; 75 (Suppl): S28-S36
  • 15 Marshall LF, Marshall SB, Klauber MR. et al. The diagnosis of head injury requires a classification based on computed axial tomography. J Neurotrauma 1992; 9 (Suppl. 01) S287-S292
  • 16 Zumkeller M, Behrmann R, Heissler HE, Dietz H. Computed tomographic criteria and survival rate for patients with acute subdural hematoma. Neurosurgery 1996; 39 (04) 708-712 , discussion 712–713
  • 17 Eisenberg HM, Gary Jr HE, Aldrich EF. et al. Initial CT findings in 753 patients with severe head injury. A report from the NIH Traumatic Coma Data Bank. J Neurosurg 1990; 73 (05) 688-698
  • 18 Gennarelli TA, Spielman GM, Langfitt TW. et al. Influence of the type of intracranial lesion on outcome from severe head injury. J Neurosurg 1982; 56 (01) 26-32
  • 19 van Dongen KJ, Braakman R, Gelpke GJ. The prognostic value of computerized tomography in comatose head-injured patients. J Neurosurg 1983; 59 (06) 951-957
  • 20 Carney N, Totten AM, O'Reilly C. et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017; 80 (01) 6-15 . PubMed; PMID: 27654000
  • 21 Timofeev I, Czosnyka M, Nortje J. et al. Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. J Neurosurg 2008; 108 (01) 66-73
  • 22 Abraham P, Rennert RC, Gabel BC. et al. ICP management in patients suffering from traumatic brain injury: a systematic review of randomized controlled trials. Acta Neurochir (Wien) 2017; 159 (12) 2279-2287
  • 23 Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A. Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma 2003; 54 (02) 312-319
  • 24 Chesnut RM, Marshall LF, Klauber MR. et al. The role of secondary brain injury in determining outcome from severe head injury. J Trauma 1993; 34 (02) 216-222
  • 25 Lazaridis C, Rusin CG, Robertson CS. Secondary brain injury: Predicting and preventing insults. Neuropharmacology 2019; 145 (Pt B): 145-152
  • 26 Roozenbeek B, Maas AI, Menon DK. Changing patterns in the epidemiology of traumatic brain injury. Nat Rev Neurol 2013; 9 (04) 231-236
  • 27 Shively S, Scher AI, Perl DP, Diaz-Arrastia R. Dementia resulting from traumatic brain injury: what is the pathology?. Arch Neurol 2012; 69 (10) 1245-1251
  • 28 Carroll LJ, Cassidy JD, Holm L, Kraus J, Coronado VG. WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Methodological issues and research recommendations for mild traumatic brain injury: the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 2004; 43 (43, Suppl) 113-125
  • 29 Simões MG, Amorim RLO. Traumatismo Cranioencefálico e Modelos Prognósticos: Revisão de Literatura. JBNC [Internet]. 31 de março de 2018 [citado 28° de março de 2021];26(1):57-. Available in: https://jbnc.emnuvens.com.br/jbnc/article/view/1303
  • 30 Perel P, Edwards P, Wentz R, Roberts I. Systematic review of prognostic models in traumatic brain injury. BMC Med Inform Decis Mak 2006; 6: 38
  • 31 Turgeon AF, Lauzier F, Burns KE. et al; Canadian Critical Care Trials Group. Determination of neurologic prognosis and clinical decision making in adult patients with severe traumatic brain injury: a survey of Canadian intensivists, neurosurgeons, and neurologists. Crit Care Med 2013; 41 (04) 1086-1093