Planta Medica International Open 2017; 4(01): e1-e7
DOI: 10.1055/s-0042-121608
Letter
Georg Thieme Verlag KG Stuttgart · New York

Inhibition of Degranulation of RBL-2H3 Cells by Extracts and Compounds from Armillaria ostoyae

Simon Merdivan
1   Institute of Pharmacy, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
,
Kristina Jenett-Siems
2   Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
,
Karsten Siems
3   AnalytiCon Discovery GmbH, Potsdam, Germany
,
Timo Niedermeyer
4   Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls University Tübingen, Tübingen, Germany
,
Michael J. Solis
5   Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
6   Department of Natural Sciences, College of Science and Information Technology, Ateneo de Zamboanga University, Zamboanga City, Philippines
,
Martin Unterseher
5   Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
,
Ulrike Lindequist
1   Institute of Pharmacy, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
› Author Affiliations
Further Information

Publication History

received 22 July 2016
revised 04 November 2016

accepted 09 November 2016

Publication Date:
16 February 2017 (online)

Abstract

Armillaria ostoyae (Romagn.) Herink is an edible honey mushroom from the family Physalacriaceae (Agaricales, Basidiomycota). Dichloromethane extracts of mushroom mycelium and fruiting bodies exhibited a significant degranulation inhibiting effect on RBL-2H3 cells using noncytotoxic concentrations. Bioactivity-guided fractionation of the mycelial dichloromethane extract led to the isolation of sesquiterpen aryl esters. Methyl linoleate could also be isolated. These substances were obtained from A. ostoyae for the first time, with one compound representing an undescribed natural product. Purified compounds melleolide H and J inhibited degranulation significantly. A. ostoyae could be a candidate for support of allergy treatments.

Supporting Information

Graphics from RAxML and MrBayes for species determination of the mycelium of A. ostoyae (Fig. S1S2), CD, ATIR, and UV spectra and 1H- as well as 1H,1H-COSY NMR spectra of 1 (Fig. S3S8), and LC chromatograms of crude extracts and active fractions (Fig. S9S11) are available as Supporting Information.

 
  • References

  • 1 Romagnesi H. Observations on Armillaria. Bull Trimest Soc Mycol Fr 1970; 86: 257-265
  • 2 Dobbertin M, Baltensweiler A, Rigling D. Tree mortality in an unmanaged mountain pine (Pinus mugo var. uncinata) stand in the Swiss National Park impacted by root rot fungi. For Ecol Manage 2001; 145: 79-89
  • 3 Cleary MR, van der Kamp BJ, Morrison DJ. Effects of wounding and fungal infection with Armillaria ostoyae in three conifer species. II. Host response to the pathogen. Forest Pathol 2011; 42: 109-123
  • 4 Cleary MR, van der Kamp BJ, Morrison DJ. Effects of wounding and fungal infection with Armillaria ostoyae in three conifer species. I. Host response to abiotic wounding in non-infected roots. Forest Pathol 2012; 42: 100-108
  • 5 Cruickshank M, Morrison DJ, Lalumière A. The interaction between competition in interior Douglas-fir plantations and disease caused by Armillaria ostoyae in British Columbia. For Ecol Manage 2009; 257: 443-452
  • 6 Entry JA, Cromack jr. K, Hansen E, Waring R. Response of western coniferous seedlings to infection by Armillaria ostoyae under limited light and nitrogen. Phytophathology 1991; 81: 89-94
  • 7 Pearce RB. Tansley Review No. 87. Antimicrobial defences in the wood of living trees. New Phytol 1996; 132: 203-233
  • 8 Schmitt CL, Tatum ML. The Malheur national forest: Location of the worldʼs largest living organism [The humongous fungus]. Portland, Oregon: United States Department of Agriculture (USDA), Forest Service, Pacific Northwest Region; 2008
  • 9 Mihail JD. Bioluminescence patterns among North American Armillaria species. Fungal Biol 2015; 119: 528-537
  • 10 Arnone A, Cardillo R, Nasini G. Structures of melleolides B–D, three antibacterial sesquiterpenoids from Armillaria mellea . Phytochemistry 1986; 25: 471-474
  • 11 Arnone A, Cardillo R, Di Modugno V, Nasini G. Secondary mold metabolites. XXII. Isolation and structure elucidation of melledonals D and E and melleolides E–H, novel sesquiterpenoid aryl esters from Clitocybe elegans and Armillaria mellea . Gazz Chim Ital 1988; 118: 517-521
  • 12 Arnone A, Cardillo R, Nasini G. Secondary mould metabolites. Part 19. Structure elucidation and absolute configuration of melledonals B and C, novel antibacterial sesquiterpenoids from Armillaria mellea. X-ray molecular structure of melledonal C. J Chem Soc Perkin Trans I 1988; 503-510
  • 13 Chen CC, Kuo YH, Cheng JJ, Sung PJ, Ni CL, Chen CC, Shen CC. Three new sesquiterpene aryl esters from the mycelium of Armillaria mellea . Molecules 2015; 20: 9994-10003
  • 14 Donnelly DMX, Sanada S, OʼReilly J, Polonsky J, Prangé T, Pascard C. Isolation and structure (X-ray analysis) of the orsellinate of armillol, a new antibacterial metabolite from Armillaria mellea . J Chem Soc Chem Commun 1982; 135-137
  • 15 Donnelly DMX, Hutchinson RM, Coveney D, Yonemitsu M. Sesquiterpene aryl esters from Armillaria mellea . Phytochemistry 1990; 29: 2569-2572
  • 16 Donnelly DMX, Abe F, Coveney D, Fukuda N, OʼReilly J. Antibacterial sesquiterpene aryl esters from Armillaria mellea . J Nat Prod 1985; 48: 10-16
  • 17 Liu TP, Chen CC, Shiao PY, Shieh HR, Chen YY, Chen YJ. Armillaridin, a honey medicinal mushroom, Armillaria mellea (higher basidiomycetes) component, inhibits differentiation and activation of human macrophages. Int J Med Mushrooms 2015; 17: 161-168
  • 18 Midland SL, Izac RR, Wing RM, Zaki A, Munnecke D, Sims JJ. Melleolide, a new antibiotic from Armillaria mellea . Tetrahedron Lett 1982; 23: 2515-2518
  • 19 Momose I, Sekizawa R, Hosokawa N, Iinuma H, Matsui S, Nakamura H, Naganawa H, Hamada M, Takeuchi T. Melleolides K, L and M, new melleolides from Armillaria mellea . J Antibiot 2000; 53: 137-143
  • 20 Yang JS, Su YL, Wang YL, Feng XZ, Yu DQ, Liang XT. Two novel protoilludane norsesquiterpenoid esters, armillasin and armillatin, from Armillaria mellea . Planta Med 1991; 57: 478-480
  • 21 Arnone A, Cardillo R, Nasini G. Secondary mould metabolites. XXIII. Isolation and structure elucidation of melleolides I and J and armellides A and B, novel sesquiterpenoid aryl esters from Armillaria novae-zelandiae . Gazz Chim Ital 1988; 118: 523-527
  • 22 Donnelly DMX, Konishi T, Dunne O, Cremin P. Sesquiterpene aryl esters from Armillaria tabescens . Phytochemistry 1997; 44: 1473-1478
  • 23 Cell Degranulation – MeSH – NCBI. Available at. https://www.ncbi.nlm.nih.gov/mesh/?term=cell+degranulation Accessed October 5, 2016
  • 24 Mastuda H, Morikawa T, Ueda K, Yoshikawa M. Structural requirements of flavonoids for inhibition of antigen-induced degranulation, TNF-α and IL-4 production from RBL-2H3 cells. Bioorg Med Chem 2002; 10: 3123-3128
  • 25 Kobori H, Sekiya A, Suzuki T, Choi JH, Hirai H, Kawagishi H. Bioactive sesquiterpene aryl esters from the culture broth of Armillaria sp. J Nat Prod 2015; 78: 163-167
  • 26 Appendino G, Gariboldi P, Menichini F. Oxygenated nerolidol derivatives from Artemisia alba . Phytochemistry 1985; 24: 1729-1733
  • 27 Yang JS, Su YL, Wang YL, Feng XZ, Yu DQ, Liang XT. Chemical constituents of Armillaria mellea mycelium. V. Isolation and characterization of armillarilin and armillarinin. Yao Xue Xue Bao 1990; 25: 24-28
  • 28 Bohnert M, Nützmann HW, Schroeckh V, Horn F, Dahse HM, Brakhage AA, Hoffmeister D. Cytotoxic and antifungal activities of melleolide antibiotics follow dissimilar structure – activity relationships. Phytochemistry 2014; 105: 101-108
  • 29 Bohnert M, Miethbauer S, Dahse HM, Ziemen J, Nett M, Hoffmeister D. In vitro cytotoxicity of melleolide antibiotics: structural and mechanistic aspects. Bioorg Med Chem Lett 2011; 21: 2003-2006
  • 30 Misiek M, Williams J, Schmich K, Hüttel W, Merfort I, Salomon CE, Aldrich CC, Hoffmeister D. Structure and cytotoxicity of arnamial and related fungal sesquiterpene aryl esters. J Nat Prod 2009; 72: 1888-1891
  • 31 Abramson J, Pecht I. Clustering the mast cell function-associated antigen (MAFA) leads to tyrosine phosphorylation of p62Dok and SHIP and affects RBL-2H3 cell cycle. Immunol Lett 2002; 82: 23-28
  • 32 Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A 2012; 109: 6241-6246
  • 33 Solis MJL, Yurkov A, dela Cruz TE, Unterseher M. Leaf-inhabiting endophytic yeasts are abundant but unevenly distributed in three Ficus species from botanical garden greenhouses in Germany. Mycol Prog 2015; 14: 1019
  • 34 Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2012; 41: D36-D42
  • 35 Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid mulitple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002; 30: 3059-3066
  • 36 Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013; 30: 772-780
  • 37 Maddison WP, Madisson DR. Mesquite: a modular system for evolutionary analysis, Version 2.75. Available at. http://mesquiteproject.org
  • 38 Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27: 221-224
  • 39 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725-2729
  • 40 Page RD. TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996; 12: 357-358
  • 41 Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17: 754-755
  • 42 Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014; 30: 1312-1313
  • 43 Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol 2012; 12: 335-337