Aktuelle Urol 2017; 48(02): 127-131
DOI: 10.1055/s-0042-120468
Übersicht
© Georg Thieme Verlag KG Stuttgart · New York

Harnsteindiagnostik – Was bringt uns die Zukunft?

Urinary Stone Analysis – What does the Future Hold in Store?
A. Miernik
1   Klinik für Urologie, Department Chirurgie, Universitätsklinikum Freiburg
,
S. Hein
1   Klinik für Urologie, Department Chirurgie, Universitätsklinikum Freiburg
,
K. Wilhelm
1   Klinik für Urologie, Department Chirurgie, Universitätsklinikum Freiburg
,
M. Schoenthaler
1   Klinik für Urologie, Department Chirurgie, Universitätsklinikum Freiburg
› Author Affiliations
Further Information

Publication History

Publication Date:
16 February 2017 (online)

Zusammenfassung

Die Harnsteinanalyse gehört zu den Schlüsselelementen des klinischen Managements von Urolithiasis Patienten. Heutzutage erfolgt sie mittels Fourier-Transform-Infrarotspektroskopie, Röntgendiffraktometrie oder Polarisationsmikroskopie in spezialisierten Laboren unter Verwendung von kostenintensiven Gerätschaften. Dies limitiert den flächendeckenden und leitliniengerechten Einsatz der Steinanalyse in der Patientenversorgung. Neue technische Entwicklungen wie die Raman Spektroskopie oder hyperspektrale Bildgebung ergeben innovative Ansätze für die Optimierung der Harnsteinanalytik. In Zukunft sind portable Systeme denkbar, die eine Harnsteinanalyse direkt postoperativ ermöglichen oder Verfahren, die sogar direkt in therapeutische Lithotripsie Lasersysteme integriert werden.

Abstract

Analysis of the composition of a urinary stone is one of the most important steps in the clinical management of patients with urolithiasis. Fourier transform infrared spectroscopy, X-ray diffractometry and petrographic microscopy are the techniques currently used. Novel technical developments in recent years – such as Raman spectroscopy and hyperspectral imaging – have resulted in new approaches to improve urinary stone analysis. In future, table-top portable systems may be used that allow stones to be rapidly examined directly after the operation. These systems may even be integrated into lithotripsy laser systems.

 
  • Literatur

  • 1 Pak CY. Kidney stones. The lancet 1998; 351: 1797-1801
  • 2 Bazin D, Daudon M, Combes C et al. Characterization and some physicochemical aspects of pathological microcalcifications. Chemical Reviews 2012; 112: 5092-5120
  • 3 Bazin D, Daudon M.. Pathological calcifications and selected examples at the medicine? solid-state physics interface. Journal of Physics D: Applied Physics 2012; 45: 383001
  • 4 Daudon M, Bader C, Jungers P.. Urinary calculi: review of classification methods and correlations with etiology. Scanning Microscopy 1993; 7: 1081-1081
  • 5 Shah J, Whitfield H.. Urolithiasis through the ages. BJU international 2002; 89: 801-810
  • 6 Eknoyan G.. History of urolithiasis. Clinical reviews in bone and mineral metabolism 2004; 2: 177-185
  • 7 Fath R.. Harnsteinleiden in Deutschland seltener als gedacht. Uro-News 2013; 17: 16-16
  • 8 Hesse A, Brändle E, Wilbert D et al. Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. European urology 2003; 44: 709-713
  • 9 Straub M, Hautmann R.. Urolithiasis–moderne Metaphylaxe wieder ein Thema!. Der Urologe A 2006; 45: 1385-1386
  • 10 Alexander RT, Hemmelgarn BR, Wiebe N et al. Kidney stones and kidney function loss: a cohort study 2012
  • 11 Straub M, Strohmaier W, Berg W et al. Diagnosis and metaphylaxis of stone disease. World journal of urology 2005; 23: 309-323
  • 12 Knoll T, Bach T, Humke U et al. S2k-Leitlinie zur Diagnostik, Therapie und Metaphylaxe der Urolithiasis (AWMF 043/025). Der Urologe 2016; 55: 904-922
  • 13 Coe FL, Parks JH, Asplin JR.. The pathogenesis and treatment of kidney stones. New England Journal of Medicine 1992; 327: 1141-1152
  • 14 Sakhaee K, Maalouf NM, Sinnott B.. Kidney stones 2012: pathogenesis, diagnosis, and management. The Journal of Clinical Endocrinology & Metabolism 2012; 97: 1847-1860
  • 15 Daudon M, Hennequin C, Lacour B et al. Sex-and age-related composition of 10 617 calculi analyzed by infrared spectroscopy. Urological research 1995; 23: 319-326
  • 16 Hesse A, Kruse R, Geilenkeuser W-J et al. Quality control in urinary stone analysis: results of 44 ring trials (1980–2001). Clinical Chemical Laboratory Medicine 2005; 43: 298-303
  • 17 Miernik A, Eilers Y, Bolwien C et al. Automated analysis of urinary stone composition using Raman spectroscopy: pilot study for the development of a compact portable system for immediate postoperative ex vivo application. The Journal of urology 2013; 190: 1895-1900
  • 18 Schubert G.. Stone analysis. Urological research 2006; 34: 146-150
  • 19 DaCosta RS, Wilson BC, Marcon NE.. Fluorescence and spectral imaging. The Scientific World Journal 2007; 7: 2046-2071
  • 20 Krafft C, Steiner G, Beleites C et al. Disease recognition by infrared and Raman spectroscopy. Journal of biophotonics 2009; 2: 13-28
  • 21 Bergholt MS, Zheng W, Lin K et al. Raman endoscopy for in vivo differentiation between benign and malignant ulcers in the stomach. Analyst 2010; 135: 3162-3168
  • 22 Shapiro A, Gofrit ON, Pizov G et al. Raman molecular imaging: a novel spectroscopic technique for diagnosis of bladder cancer in urine specimens. European urology 2011; 59: 106-112
  • 23 Cauberg EC, de Bruin DM, Faber DJ et al A new generation of optical diagnostics for bladder cancer: technology, diagnostic accuracy, and future applications. European urology 2009; 56: 287-297
  • 24 Bensalah K, Fleureau J, Rolland D et al. de Crevoisier R. [Optical spectroscopy: a new approach to assess urological tumors]. Progres en urologie: journal de l'Association francaise d'urologie et de la Societe francaise d'urologie 2010; 20: 477-482
  • 25 Liu Q.. WJCO. World 2011; 2: 50-63
  • 26 Hess A, Sanders G.. Atlas of infrared spectra for the analysis of urinary concrements. Georg Thieme Verlag; 1988
  • 27 Fernández-Ibáñez V, Fearn T, Montañés E et al. Improving the discriminatory power of a near-infrared microscopy spectral library with a support vector machine classifier. Applied spectroscopy 2010; 64: 66-72
  • 28 Lawson CL, Hanson RJ.. Solving least squares problems. 1995. vol 15. SIAM;
  • 29 Miernik A, Eilers Y, Nuese C et al. Is in vivo analysis of urinary stone composition feasible? Evaluation of an experimental setup of a Raman system coupled to commercial lithotripsy laser fibers. World journal of urology 2015; 33: 1593-1599
  • 30 Blanco F, Lumbreras F, Serrat J et al. Taking advantage of hyperspectral imaging classification of urinary stones against conventional infrared spectroscopy. Journal of biomedical optics 2014; 19: 126004-126004
  • 31 Pucetaite M, Hendrixson V, Zelvys A et al. Application of infrared spectroscopic imaging in specular reflection mode for determination of distribution of chemical components in urinary stones. Journal of Molecular Structure 2013; 1031: 38-42
  • 32 Piqueras S, Duponchel L, Tauler R et al. Resolution and segmentation of hyperspectral biomedical images by multivariate curve resolution-alternating least squares. Analytica chimica acta 2011; 705: 182-192
  • 33 Türk C, Petřík A, Sarica K et al. EAU guidelines on interventional treatment for urolithiasis. European urology 2016; 69: 475-482
  • 34 Siener R, Hesse A.. Modern general metaphylaxis of stone disease. New risks, new evidence, new recommendations. Der Urologe Ausg A 2006; 45 1392 1394-1398
  • 35 Siener R.. Impact of dietary habits on stone incidence. Urological research 2006; 34: 131-133
  • 36 Hesse A, Siener R.. Current aspects of epidemiology and nutrition in urinary stone disease. World journal of urology 1997; 15: 165-171
  • 37 Deng S, Chen D, Ouyang J.. [Application and research progress of composition analysis of urinary calculi]. Guang pu xue yu guang pu fen xi= Guang pu 2006; 26: 761-767
  • 38 Siener R, Hesse A.. Comparative costs of various treatment strategies and preventive measures. In: Urolithiasis. Springer; 2012. pp 897-901