Planta Med 2016; 82(18): 1513-1524
DOI: 10.1055/s-0042-119728
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Ruscus Genus: A Rich Source of Bioactive Steroidal Saponins

Milena Masullo
Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
,
Cosimo Pizza
Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
,
Sonia Piacente
Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
› Author Affiliations
Further Information

Publication History

received 06 August 2016
revised 19 October 2016

accepted 20 October 2016

Publication Date:
08 November 2016 (online)

Abstract

The genus Ruscus (Asparagaceae family) is native to the Mediterranean, Southern and Western Europe and is represented by perennial, rhizomatous, and evergreen shrubs. Among the approximately seven species spread throughout Europe up to Iran, Ruscus aculeatus L. (butcherʼs broom) is the most widely distributed and appreciated. This review provides an overview of the traditional use of Ruscus spp., the current knowledge of the chemistry of this genus, and the pharmacological studies carried out on Ruscus spp. extracts. The underground parts of Ruscus plants are a source of steroidal saponins that can be classified into two structural classes: the hexacyclic spirostanol saponins and the pentacyclic furostanol saponins. The main aglycones are ruscogenin and neoruscogenin. From the pharmacological point of view, the most studied Ruscus species is undoubtedly R. aculeatus, a very ancient phlebotherapeutic agent. Pharmacological investigations since the discovery of the vasoconstrictive and venotonic properties of ruscogenin and neoruscogenin in the underground parts of R. aculeatus are discussed. Preparations based on Ruscus species are currently used for the treatment of chronic venous insufficiency, varicose veins, haemorrhoids, and orthostatic hypotension. Finally, analytical techniques for the quality control of R. aculeatus extracts are reported.

 
  • References

  • 1 Kim JH, Kim DK, Forest F, Fay MF, Chase MW. Molecular phylogenetics of Ruscaceae sensu lato and related families (Asparagales) based on plastid and nuclear DNA sequences. Ann Bot 2010; 106: 775-790
  • 2 Thomas PA, Mukassabi TA. Biological Flora of the British Isles: Ruscus aculeatus . J Ecol 2014; 102: 1083-1100
  • 3 Davis PH. Ruscus L. In: Davis PH, editor Flora of Turkey and The East Aegean Islands. Vol. 8. Edinburgh: Edinburgh University Press; 1984: 72-74
  • 4 Veronese G. A study on the genus Ruscus and its horticultural value. Avaible at. http://wwwslidesharenet/GiulioVeronese/a-study-on-the-genus-ruscus-and-its-horticultural-value Accessed May 5, 2016
  • 5 Pignatti S. Flora dʼItalia. Italia: Edagricole-New Business Media; 2002
  • 6 Napolitano A, Muzashvili T, Perrone A, Pizza C, Kemertelidze E, Piacente S. Steroidal glycosides from Ruscus ponticus . Phytochemistry 2011; 72: 651-661
  • 7 Balica G, Vostinaru O, Tamas M, Crisan G, Mogosan C. Anti-inflammatory effect of the crude steroidal saponin from the rhizomes of Ruscus aculeatus L. (Ruscaceae) in two rat models of acute inflammation. J Food Agric Environ 2013; 11: 106-108
  • 8 Bouskela E, Cyrino FZ, Marcelon G. Effects of Ruscus extract on the internal diameter of arterioles and venules of the hamster cheek pouch microcirculation. J Cardiovasc Pharmacol 1993; 22: 221-224
  • 9 Bouskela E, Cyrino FZ, Marcelon G. Inhibitory effect of the Ruscus extract and of the flavonoid hesperidine methylchalcone on increased microvascular permeability induced by various agents in the hamster cheek pouch. J Cardiovasc Pharmacol 1993; 22: 225-230
  • 10 Bouskela E, Cyrino FZ, Marcelon G. Possible mechanisms for the inhibitory effect of Ruscus extract on increased microvascular permeability induced by histamine in hamster cheek pouch. J Cardiovasc Pharmacol 1994; 24: 281-285
  • 11 Huang YL, Kou JP, Ma L, Song JX, Yu BY. Possible mechanism of the anti-inflammatory activity of ruscogenin: role of intercellular adhesion molecule-1 and nuclear factor-κB. J Pharmacol Sci 2008; 108: 198-205
  • 12 Longo L, Vasapollo G. Determination of anthocyanins in Ruscus aculeatus L. berries. J Agric Food Chem 2005; 53: 475-479
  • 13 Guvenc A, Satir E, Coskun M. Determination of ruscogenin in Turkish Ruscus L. species by UPLC. Chromatographia 2007; 66: S141-S145
  • 14 Ali-Shtayeh MS, Yaghmour RM, Faidi YR, Salem K, Al-Nuri MA. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J Ethnopharmacol 1998; 60: 265-271
  • 15 Guarrera PM. Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium). Fitoterapia 2005; 76: 1-25
  • 16 Hadzifejzovic N, Kukic-Markovic J, Petrovic S, Sokovic M, Glamoclija J, Stojkovic D, Nahrstedt A. Bioactivity of the extracts and compounds of Ruscus aculeatus L. and Ruscus hypoglossum L. Ind Crops Prod 2013; 49: 407-411
  • 17 Perrone A, Muzashvili T, Napolitano A, Skhirtladze A, Kemertelidze E, Pizza C, Piacente S. Steroidal glycosides from the leaves of Ruscus colchicus: isolation and structural elucidation based on a preliminary liquid chromatography-electrospray ionization tandem mass spectrometry profiling. Phytochemistry 2009; 70: 2078-2088
  • 18 Dehghan H, Sarrafi Y, Salehi P. Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. J Food Drug Anal 2016; 24: 179-188
  • 19 de Combarieu E, Falzoni M, Fuzzati N, Gattesco F, Giori A, Lovati M, Pace R. Identification of Ruscus steroidal saponins by HPLC-MS analysis. Fitoterapia 2002; 73: 583-596
  • 20 Sannie C, Lapin H. Sterolic sapogenins. VII. Neoruscogenin (3β,1-dihydroxy-22β,25L-5-spirostene), a new sapogenin from Ruscus aculeatus . Bull Soc Chim Fr 1957; 10: 1237-1241
  • 21 Mimaki Y, Kuroda M, Obata Y, Sashida Y. Steroidal glycosides from the rhizomes of Ruscus hypoglossum . Nat Med 1999; 53: 266-270
  • 22 Mimaki Y, Aoki T, Jitsuno M, Kilic CS, Coskun M. Steroidal glycosides from the rhizomes of Ruscus hypophyllum . Phytochemistry 2008; 69: 729-737
  • 23 Mimaki Y, Aoki T, Jitsuno M, Yokosuka A, Kilic CS, Coskun M. Steroidal saponins from the rhizomes of Ruscus hypophyllum . Nat Prod Commun 2008; 3: 1671-1678
  • 24 Panova D, Nikolov S. Steroid saponins from Ruscus hypoglossum L. Farmatsiya (Sofia) 1977; 27: 8-14
  • 25 Mimaki Y, Kuroda M, Yokosuka A, Sashida Y. A spirostanol saponin from the underground parts of Ruscus aculeatus . Phytochemistry 1999; 51: 689-692
  • 26 Bombardelli E, Bonati A, Gabetta B, Mustich G. Glycosides from rhizomes of Ruscus aculeatus . Fitoterapia 1971; 42: 127-136
  • 27 Mimaki Y, Kuroda M, Kameyama A, Yokosuka A, Sashida Y. New steroidal constituents of the underground parts of Ruscus aculeatus and their cytostatic activity on HL-60 cells. Chem Pharm Bull (Tokyo) 1998; 46: 298-303
  • 28 Barbic M, Schmidt TJ, Juergenliemk G. Novel phenyl-1-benzoxepinols from butcherʼs broom (Rusci rhizoma). Chem Biodivers 2012; 9: 1077-1083
  • 29 Mimaki Y, Kuroda M, Yokosuka A, Sasahida Y. Two new bisdesmosidic steroidal saponins from the underground parts of Ruscus aculeatus . Chem Pharm Bull 1998; 46: 879-881
  • 30 Horikawa T, Mimaki Y, Kameyama A, Sashida Y, Nikaido T, Ohmoto T. Aculeoside A, a novel steroidal saponin containing a deoxyaldoketose from Ruscus aculeatus . Chem Lett 1994; 2303-2306
  • 31 Mimaki Y, Kuroda M, Kameyama A, Yokosuka A, Sashida Y. Aculeoside B, a new bisdesmosidic spirostanol saponin from the underground parts of Ruscus aculeatus . J Nat Prod 1998; 61: 1279-1282
  • 32 Kameyama A, Shibuya Y, Kusuoku H, Nishizawa Y, Nakano S, Tatsuta K. Isolation and structural determination of spilacleosides A and B having a novel 1, 3-dioxolan-4-one ring. Tetrahedron Lett 2003; 44: 2737-2739
  • 33 Mimaki Y, Kuroda M, Kameyama A, Yokosuka A, Sashida Y. Steroidal saponins from the underground parts of Ruscus aculeatus and their cytostatic activity on HL-60 cells. Phytochemistry 1998; 48: 485-493
  • 34 Oulad-Ali A, Guillaume D, Belle R, David B, Anton R. Sulfated steroidal derivatives from Ruscus aculeatus . Phytochemistry 1996; 42: 895-897
  • 35 Hilal SH, El-Alfy TS, Ibrahim EY. A study of the saponin content of the cladophylls of Ruscus hypoglossum L. Bull Fac Pharm 1982; 19: 85-92
  • 36 Panova D, Nikolov S, Ahond A, Longevialle P, Poupat C. Steroidal trihydroxysapogenins from Ruscus hypoglossum. Izd. BAN; 1978: 339-343
  • 37 Pkheidze TA, Kereselidze EV, Kemertelidze EP. Diosgenin, neoruscogenin, and ruscogenin from Ruscus ponticus, Ruscus hypophyllum, and Allium albidum . Khim Prir Soedin 1971; 7: 841-842
  • 38 Korkashvili TS, Dzhikiya OD, Vugalter MM, Pkheidze TA, Kemertelidze EP. Steroid glycosides of Ruscus ponticus . Soobshch Akad Nauk Gruz Ssr 1985; 120: 561-564
  • 39 Mari A, Napolitano A, Perrone A, Pizza C, Piacente S. An analytical approach to profile steroidal saponins in food supplements: The case of Ruscus aculeatus . Food Chem 2012; 134: 461-468
  • 40 De Marino S, Festa C, Zollo F, Iorizzi M. Novel steroidal components from the underground parts of Ruscus aculeatus L. Molecules 2012; 17: 14002-14014
  • 41 Challinor VL, Piacente S, De Voss JJ. NMR assignment of the absolute configuration of C-25 in furostanol steroidal saponins. Steroids 2012; 77: 602-608
  • 42 Agrawal PK, Bunsawansong P, Morris GA. NMR spectral investigations. Part 46. Dependence of the 1 H NMR chemical shifts of ring F resonances on the orientation of the 27-methyl group of spirostane-type steroidal sapogenins. Phytochemistry 1997; 47: 255-257
  • 43 Agrawal PK, Bunsawansong P, Morris GA. Dependence of the 1 H NMR chemical shifts of ring F resonances on the orientation of the 27-methyl group of spirostane-type steroidal sapogenins. Phytochemistry 1998; 47: 255-257
  • 44 Agrawal PK. 25R/25 S stereochemistry of spirostane-type steroidal sapogenins and steroidal saponins via chemical shift of geminal protons of ring-F. Magn Reson Chem 2003; 41: 965-968
  • 45 Jones RN, Katzenellenbogen E, Dobriner K. Steroid metabolism. XVII. The infrared absorption spectra of the steroid sapogenins. J Am Chem Soc 1953; 75: 158-166
  • 46 Silva BP, Bernardo RR, Parente JP. New furostanol glycosides from Costus spicatus . Fitoterapia 1998; 69: 528-532
  • 47 Da Silva BP, De Sousa AC, Silva GM, Mendes TP, Parente JP. A new bioactive steroidal saponin from Agave attenuata . Z Naturforsch C 2002; 57: 423-428
  • 48 Agrawal PK. NMR spectral investigations, part 51. Dependence of 1 H NMR chemical shifts of geminal protons of glycosyloxy methylene (H2-26) on the orientation of the 27-methyl group of furostane-type steroidal saponins. Magn Reson Chem 2004; 42: 990-993
  • 49 Agrawal PK. Assigning stereo-diversity of the 27-Me group of furostane-type steroidal saponins via NMR chemical shifts. Steroids 2005; 70: 715-724
  • 50 Inoue K, Shimomura K, Kobayashi S, Sankawa U, Ebizuka Y. Conversion of furostanol glycoside to spirostanol glycoside by β-glucosidase in Costus speciosus . Phytochemistry 1996; 41: 725-727
  • 51 Bombardelli E, Bonati A, Gabetta B, Mustich G. Glycosides from rhizomes of Ruscus aculeatus. II. Fitoterapia 1972; 43: 3-10
  • 52 Capra C. Pharmacology and toxicology of some components of Ruscus aculeatus . Fitoterapia 1972; 43: 99-113
  • 53 Rudofsky G. Improving venous tone and capillary sealing. Effect of a combination of Ruscus extract and hesperidine methyl chalcone in healthy probands in heat stress. Fortschr Med 1989; 107: 52 55–58
  • 54 Marcelon G, Verbeuren TJ, Lauressergues H, Vanhoutte PM. Effect of Ruscus aculeatus on isolated canine cutaneous veins. Gen Pharmacol 1983; 14: 103-106
  • 55 Marcelon G, Pouget G, Tisneversailles J. Alpha-Adrenergic Responsiveness on Canine Thoracic-Duct Lymph – Effect of Ruscus Aculeatus Extract. Blood Vessels 1987; 24: 291
  • 56 Rubanyi G, Marcelon G, Vanhoutte PM. Effect of temperature on the responsiveness of cutaneous veins to the extract of Ruscus aculeatus . Gen Pharmacol 1984; 15: 431-434
  • 57 Facino RM, Carini M, Stefani R, Aldini G, Saibene L. Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: factors contributing to their efficacy in the treatment of venous insufficiency. Arch Pharm 1995; 328: 720-724
  • 58 Cluzan RV, Alliot F, Ghabboun S, Pascot M. Treatment of secondary lymphedema of the upper limb with CYCLO 3 FORT. Lymphology 1996; 29: 29-35
  • 59 Miller VM, Rud KS, Gloviczki P. Pharmacological assessment of adrenergic receptors in human varicose veins. Int Angiol 2000; 19: 176-183
  • 60 Bouaziz N, Michiels C, Janssens D, Berna N, Eliaers F, Panconi E, Remacle J. Effect of Ruscus extract and hesperidin methylchalcone on hypoxia-induced activation of endothelial cells. Int Angiol 1999; 18: 306-312
  • 61 Huang YL, Kou JP, Liu JH, Liu N, Yu BY. Comparison of anti-inflammatory activities of ruscogenin, a major steroidal sapogenin from Radix ophiopogon japonicus, and its succinylated derivative, RUS-2HS. Drug Dev Res 2008; 69: 196-202
  • 62 Barbic M, Willer EA, Rothenhofer M, Heilmann J, Furst R, Jurgenliemk G. Spirostanol saponins and esculin from Rusci rhizoma reduce the thrombin-induced hyperpermeability of endothelial cells. Phytochemistry 2013; 90: 106-113
  • 63 Di Lazzaro A, Morana A, Schiraldi C, Martino A, Ponzone C, De Rosa M. An enzymatic process for the production of the pharmacologically active glycoside desglucodesrhamnoruscin from Ruscus aculeatus L. J Mol Catal B Enzym 2001; 11: 307-314
  • 64 Allaert FA, Hugue C, Cazaubon M, Renaudin JM, Clavel T, Escourrou P. Correlation between improvement in functional signs and plethysmographic parameters during venoactive treatment (Cyclo 3 Fort). Int Angiol 2011; 30: 272-277
  • 65 Boyle P, Diehm C, Robertson C. Meta-analysis of clinical trials of Cyclo 3 Fort in the treatment of chronic venous insufficiency. Int Angiol 2003; 22: 250-262
  • 66 Boisseau MR. Pharmacological targets of drugs employed in chronic venous and lymphatic insufficiency. Int Angiol 2002; 21: 33-39
  • 67 Svensjo E, Bouskela E, Cyrino FZ, Bougaret S. Antipermeability effects of Cyclo 3 Fort in hamsters with moderate diabetes. Clin Hemorheol Microcirc 1997; 17: 385-388
  • 68 Bouskela E, Cyrino FZ, Bougaret S. Effects of Cyclo 3 Fort on microvascular reactivity and the venoarteriolar reflex in diabetic hamsters. Clin Hemorheol Microcirc 1997; 17: 351-356
  • 69 Janssens D, Delaive E, Houbion A, Eliaers F, Remacle J, Michiels C. Effect of venotropic drugs on the respiratory activity of isolated mitochondria and in endothelial cells. Br J Pharmacol 2000; 130: 1513-1524
  • 70 Cappelli R, Nicora M, Di PT. Use of extract of Ruscus aculeatus in venous disease in the lower limbs. Drugs Exp Clin Res 1988; 14: 277-283
  • 71 Rauwald HW, Janssen B. Improved Isolation and HPLC/TLC Analyses of Major Saponins from Ruscus aculeatus . Planta Med 1988; 54: 581
  • 72 Beltramino R, Penenory A, Buceta AM. An open-label, randomized multicenter study comparing the efficacy and safety of Cyclo 3 Fort versus hydroxyethyl rutoside in chronic venous lymphatic insufficiency. Angiology 2000; 51: 535-544
  • 73 Boccalon H, Causse C, Yubero L. Comparative efficacy of a single daily dose of two capsules Cyclo 3 Fort in the morning versus a repeated dose of one capsule morning and noon. A one-month study. Int Angiol 1998; 17: 155-160
  • 74 Mathon C, Duret M, Kohler M, Edder P, Bieri S, Christen P. Multi-targeted screening of botanicals in food supplements by liquid chromatography with tandem mass spectrometry. Food Chem 2013; 138: 709-717
  • 75 Masullo M, Montoro P, Mari A, Pizza C, Piacente S. Medicinal plants in the treatment of womenʼs disorders: Analytical strategies to assure quality, safety and efficacy. J Pharm Biomed Anal 2015; 113: 189-211
  • 76 Kite GC, Porter EA, Simmonds MSJ. Chromatographic behaviour of steroidal saponins studied by high-performance liquid chromatography-mass spectrometry. J Chromatogr A 2007; 1148: 177-183
  • 77 Vlase L, Kiss B, Balica G, Tamas M, Crisan G, Leucuta SE. High-throughput LC/MS/MS analysis of ruscogenin and neoruscogenin in Ruscus aculeatus L. J AOAC Int 2009; 92: 1055-1059
  • 78 Mattoli L, Cangi F, Ghiara C, Burico M, Maidecchi A, Bianchi E, Ragazzi E, Bellotto L, Seraglia R, Traldi P. A metabolite fingerprinting for the characterization of commercial botanical dietary supplements. Metabolomics 2011; 7: 437-445
  • 79 Mimaki Y, Kuroda M, Ide A, Kameyama A, Yokosuka A, Sashida Y. Steroidal saponins from the aerial parts of Dracaena draco and their cytostatic activity on HL-60 cells. Phytochemistry 1999; 50: 805-813
  • 80 Inoue K, Kobayashi S, Noguchi H, Sankawa U, Ebizuka Y. Spirostanol and furostanol glycosides of Costus speciosus (Koenig.) Sm. Nat Med 1995; 49: 336-339
  • 81 Mimaki Y, Takaashi Y, Kuroda M, Sashida Y, Nikaido T. Steroidal saponins from Nolina recurvata stems and their inhibitory activity on cyclic AMP phosphodiesterase. Phytochemistry 1996; 42: 1609-1615