Int J Sports Med 2017; 38(04): 263-269
DOI: 10.1055/s-0042-119727
Physiology & Biochemistry
© Georg Thieme Verlag KG Stuttgart · New York

Digoxin Induces Cardiac Hypertrophy Without Negative Effects on Cardiac Function and Physical Performance in Trained Normotensive Rats

Claodete Hasselstrom Neves
1   UFMT, Laboratório de Fisiologia - Instituto de Ciências da Saúde, Cuiabá, Brazil
,
Ramires Alsamir Tibana
2   Catholic University of Brasilia, Physical Education, Taguatinga, Brazil
,
Jonato Prestes
2   Catholic University of Brasilia, Physical Education, Taguatinga, Brazil
,
Fabricio Azevedo Voltarelli
3   UFMT, Bioscience/Nutrition, Cuiabá, Brazil
,
Andreo Fernando Aguiar
4   North University of Paraná (UNOPAR), Centre of Biological and Healthy Sciences, Londrina, Brazil
,
Gustavo Augusto Ferreira Mota
5   UFMT, Laboratório de Fisiologia - Instituto de Ciências da Saúde, Cuiabá, Brazil
,
Sergio Luiz Borges de Sousa
5   UFMT, Laboratório de Fisiologia - Instituto de Ciências da Saúde, Cuiabá, Brazil
,
Andre Soares Leopoldo
6   Universidade Federal de Espírito Santo, Laboratório de Fisiologia e Bioquímica Experimental/NUPEM, Vitoria, Brazil
,
Ana Paula Lima Leopoldo
6   Universidade Federal de Espírito Santo, Laboratório de Fisiologia e Bioquímica Experimental/NUPEM, Vitoria, Brazil
,
Andre Mueller
5   UFMT, Laboratório de Fisiologia - Instituto de Ciências da Saúde, Cuiabá, Brazil
,
Danilo Henrique Aguiar
5   UFMT, Laboratório de Fisiologia - Instituto de Ciências da Saúde, Cuiabá, Brazil
,
James Wilfred Navalta
7   University of Nevada, Las Vegas, Kinesiology and Nutrition Sciences, Las Vegas, United States
,
Mario Mateus Sugizaki
5   UFMT, Laboratório de Fisiologia - Instituto de Ciências da Saúde, Cuiabá, Brazil
› Author Affiliations
Further Information

Publication History



accepted after revision 13 October 2016

Publication Date:
20 February 2017 (online)

Abstract

Cardiotonic drugs and exercise training promote cardiac inotropic effects, which may affect training-induced cardiac adaptations. This study investigated the effects of long-term administration of digoxin on heart structure and function, and physical performance of rats submitted to high-intensity interval training (HIIT). Male Wistar rats, 60 days old, were divided into control (C), digoxin (DIGO), trained (T), and trained with digoxin (TDIGO). Digoxin was administered by gavage (30 µg/kg/day) for 75 days. The HIIT program consisted of treadmill running 60 min/day (8 min at 80% of the maximum speed (MS) and 2 min at 20% of the MS), 5 days per week during 60 days. The main cardiac parameters were evaluated by echocardiograph and cardiomyocyte area was determined by histology. There were no group x time effects of digoxin, HIIT or interactions (digoxin and HIIT) on functional echocardiographic parameters (heart rate; ejection fraction) or in the maximum exercise test. There was a group x time interaction, as evidenced by observed cardiac hypertrophy in the TDIGO group evaluated by ratio of left ventricle weight to body weight (p<0.002) and cardiomyocyte area (p<0.000002). Long-term administration of digoxin promoted cardiac hypertrophy without affecting cardiac function and physical performance in rats submitted to HIIT.

 
  • References

  • 1 Aldinger EE. Effects of digitoxin on the development of cardiac hypertrophy in the rat subjected to chronic exercise. Am J Cardiol 1970; 25: 339-343
  • 2 Anderson ME. Calmodulin kinase signaling in heart: an intriguing candidate target for therapy of myocardial dysfunction and arrhythmias. Pharmacol Ther 2005; 106: 39-55
  • 3 Keen CL, Knapka JJ, Magalhaes H, Oftedal OT, Reeves PG, Shaw HA, Smith JE, Steele RD. Nutrient requirements of the laboratory rat. In: Nutrient requirements of laboratory animals. 4nd ed. New York: National Academy Press; 1995
  • 4 Billat VL, Sirvent P, Py G, Koralsztein JP, Mercier J. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med 2003; 33: 407-426
  • 5 Boon JA. Ecocardiografia Bidimensional e em modo-M para o clínico de pequenos animais. 1ª edição. São Paulo: Roca; 2004
  • 6 Botker HE, Toft P, Klitgaard NA, Simonsen EE. Influence of physical exercise on serum digoxin concentration and heart rate in patients with atrial fibrillation. Br Heart J 1991; 65: 337-341
  • 7 Clapham DE. Calcium signaling. Cell 2007; 131: 1047-1058
  • 8 Coates AL, Desmond K, Asher MI, Hortop J, Beaudry PH. The effect of digoxin on exercise capacity and exercising cardiac function in cystic fibrosis. J Chest 1982; 82: 543-547
  • 9 Conn EH, Williams RS, Wallace AG. Exercise responses before and after physical conditioning in patients with severely depressed left ventricular function. Am J Cardiol 1982; 49: 296-300
  • 10 Cunha UG, Barbosa MT, Paradela EM, Carvalho FG. Uso de digital em idosos admitidos em unidade de geriatria de um hospital geral. Arq Bras Cardiol 1998; 71: 695-698
  • 11 Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev 2008; 88: 1009-1086
  • 12 Fleg JL, Rothfeld B, Gottlieb SH. Effect of maintenance digoxin therapy on aerobic performance and exercise left ventricular function in mild to moderate heart failure due to coronary artery disease: a randomized, placebo-controlled, crossover trial. J Am Coll Cardiol 1991; 17: 743-751
  • 13 Friesen WJ, Cumming GR. Effects of digoxin on the oxygen debt and the exercise electrocardiogram in normal subjects. Can Med Assoc J 1967; 97: 960-964
  • 14 Fuchs FD, Wanmacher L. Ferreira MBC. Farmacologia Clínica. Fundamentos da terapêutica racional3ª edição. Rio de Janeiro: Guanabara Koogan; 2004
  • 15 Gheorghiade M, Fergunson D. Digoxin. A neurohormonal modulator in heart failure? Circulation 1991; 84: 2181-2186
  • 16 Ghorayeb N, Batlouni M, Pinto IM, Dioguardi GS. Left ventricular hypertrophy of athletes: adaptative physiologic response of the heart. Arq Bras Cardiol 2005; 85: 191-197
  • 17 Harriss DJ, Atkinson G. Ethical standards in sports and exercise science research: 2016 update. Int J Sports Med 2015; 36: 1121-1124
  • 18 Hauptman PJ, Kelly RA. Digitalis. Circulation 1999; 99: 1265-1270
  • 19 Kemi OJ, Ellingsen O, Ceci M, Grimaldi S, Smith GL, Condorelli G. et al. Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol 2007; 43: 354-361
  • 20 Lee AP, Ice R, Blessey R, Sanmarco ME. Long term effects of physical training on coronary patients with impaired ventricular function. Circulation 1979; 60: 1519-1526
  • 21 Manchado FB, Mota CSA, Ribeiro C, Araújo GG, Contarteze RVL, Gobatto CA, Araujo MB. Mello MAR. Efeitos do ciclo claro-escuro na determinação da velocidade crítica e capacidade de corrida anaeróbia de ratos Wistar. Motriz 2007; 13: 96-97
  • 22 Manunta P, Hamilton J, Rogowski AC, Hamilton BP, Hamlyn JM. Chronic hypertension induced by oubain but not digoxin in the heart: antihypertensive effect of digoxin and digitoxin. Hypertens Res 2000; 23: S77-S85
  • 23 Moreira VO, de Castro AV, Yaegaschi MY, Cicogna AC, Okoshi MP, Pereira CA, Aragon FF, Bruno MB, Padovani CR, Okoshi K. Critérios ecocardiográficos para definição de graus de disfunção ventricular em ratos portadores de estenose aórtica. Arqu Bras Cardiol 2006; 86: 432-438
  • 24 Morisco C, Cuocolo A, Romano M, Nappi A, Iaccarino G, Volpe M, Salvatore M, Trimarco B. Influence of digitalis on left ventricular functional response to exercise in congestive heart failure. Am J Cardiol 1996; 77: 480-485
  • 25 Mourier A, Gautier JF, De Kerviler E, Bigard AX, Villette JM, Garnier JP, Duvallet A, Guezennec CY, Cathelineau G. Mobilization of visceral adipose tissue related to the improvement in insulin sensitivity in response to physical training in NIDDM: effects of branched-chain amino acid supplements. Diabetes Care 1997; 20: 385-391
  • 26 Ohkawara K, Tanaka S, Miyachi M, Ishikawa- Takata K, Tabata I. A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials. Int J Obes 2007; 31: 1786-1797
  • 27 Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete’s heart: a meta-analysis of cardiac structure and function. Circulation 2000; 101: 336-344
  • 28 Prímola-Gomes TN, Campos LA, Lauton-Santos S, Balthazar CH, Guatimosim S, Capettini LSA. Exercise capacity is related to calcium transients in ventricular cardiomyocytes. J Appl Physiol 2009; 107: 593-598
  • 29 Rahimtoola SH. Digitalis therapy for patients in clinical heart failure. Circulation 2004; 109: 2942-2946
  • 30 Ribner HS, Plucinski DA, Hsieh AM, Bresnahan D, Molteni A, Askenazi J, Lesch M. Acute effects of digoxin on total systemic vascular resistance in congestive heart failure due to dilated cardiomyopathy: a hemodynamic hormonal study. Am J Cardiol 1985; 56: 896-904
  • 31 Stucky MA, Goldberger ZD. Digoxin: its role in contemporary medicine. Postgrad Med J 2015; 91: 514-518
  • 32 Sullivan M, Atwood JE, Myers J, Feuer J, Hall P, Kellerman B, Forbes S, Froelicher V. Increased exercise capacity after digoxin administration in patients with heart failure. J Am Coll Cardiol 1989; 13: 1138-1143
  • 33 Wang H, Yuan W, Lu Z. Effects of ouabain and digoxin on gene expression of sodium pump alpha-subunit isoforms in rat myocardium. Chin Med J 2001; 114: 1055-1059
  • 34 Wang Y, Wisloff U, Kemi OJ. Animal models in the study of exercise-induced cardiac hypertrophy. Physiol Res 2010; 59: 633-44.6
  • 35 Wisloff U, Loennchen JP, Falk G, Beisvag V, Currie S, Smith G, Ellingsen O. Increased contractility and calcium sensitivity in cardiac myocytes isolated from endurance trained rats. Cardiovasc Res 2001; 50: 495-508