Planta Med 2016; 82(18): 1496-1512
DOI: 10.1055/s-0042-118387
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Saponin Interactions with Model Membrane Systems – Langmuir Monolayer Studies, Hemolysis and Formation of ISCOMs

Carolin de Groot
Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
,
Christel C. Müller-Goymann
Institut für Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
› Author Affiliations
Further Information

Publication History

received 05 April 2016
revised 22 September 2016

accepted 24 September 2016

Publication Date:
19 October 2016 (online)

Abstract

Saponins are used in medicine due to their pharmacological and immunological effects. To better understand interactions of saponins with model membranes and natural membranes of, for example, erythrocytes, Langmuir film balance experiments are well established. For most saponins, a strong interaction with cholesterol was demonstrated in dependence of both the aglycone part and the sugar moieties and is suggested to be correlated with a strong hemolytic activity, high toxicity, and high surface activity, as was demonstrated for the steroid saponin digitonin. In general, changes in the sugar chain or in substituents of the aglycone result in a modification of the saponin properties. A promising saponin with regard to fairly low hemolytic activity and high adjuvant effect is α-tomatine, which still shows a high affinity for cholesterol. An interaction with cholesterol and lipids has also been proven for the Quillaja saponin from the bark of Quillaja saponaria Molina. This triterpene saponin was approved in marketed vaccines as an adjuvant due to the formation of immunostimulating complexes. Immunostimulating complexes consist of a Quillaja saponin, cholesterol, phospholipids, and a corresponding antigen. Recently, another saponin from Quillaja brasiliensis was successfully tested in immunostimulating complexes, too. Based on the results of interaction studies, the formation of drug delivery systems such as immunostimulating complexes or similar self-assembled colloids is postulated for a variety of saponins.

 
  • References

  • 1 Riguera R. Isolating bioactive compounds from marine organisms. J Mar Biotechnol 1997; 5: 187-193
  • 2 Vincken JP, Heng L, de Groot A, Gruppen H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 2007; 68: 275-297
  • 3 Sparg SG, Light ME, van Staden J. Biological activities and distribution of plant saponins. J Ethnopharmacol 2004; 94: 219-243
  • 4 Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: a review. Phytochem Rev 2010; 9: 425-474
  • 5 Netala VR, Ghosh SB, Bobbu P, Anitha D, Tartte V. Triterpenoid saponins: a review on biosynthesis, applications and mechanism of their action. Int J Pharm Pharm Sci 2015; 7: 24-28
  • 6 Francis G, Kerem Z, Makkar HP, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr 2002; 88: 587-605
  • 7 Oleszek W, Hamed A. Saponin-based Surfactants. In: Kjellin M, Johansson I, eds. Surfactants from renewable Resources. Chichester, UK: Wiley & Sons; 2010
  • 8 Voutquenne L, Lavaud C, Massiot G, Men-Olivier LL. Structure-activity relationships of haemolytic saponins. Pharm Biol 2002; 40: 253-262
  • 9 Man S, Gao W, Zhang Y, Huang L, Liu C. Chemical study and medical application of saponins as anti-cancer agents. Fitoterapia 2010; 81: 703-714
  • 10 Waller GR, Yamasaki K. Saponins used in Food and Agriculture. Advances in experimental Medicine and Biology. New York: Springer; 1996
  • 11 Choi YH, Kinghorn AD, Shi X, Zhang H, Teo BK. Abrusoside A: a new type of highly sweet triterpene glycoside. J Chem Soc 1989; 887-888
  • 12 Kim YS, Cho IH, Jeong MJ, Jeong SJ, Nah SY, Cho YS, Kim SH, Go A, Kim SE, Kang SS, Moon CJ, Kim JC, Kim SH, Bae CS. Therapeutic effect of total ginseng saponin on skin wound healing. J Ginseng Res 2011; 35: 360-367
  • 13 Kimura Y, Sumiyoshi M, Kawahira K, Sakanaka M. Effects of ginseng saponins isolated from Red Ginseng roots on burn wound healing in mice. Br J Pharmacol 2006; 148: 860-870
  • 14 Simões CMO, Amoros M, Girre L. Mechanism of antiviral activity of triterpenoid saponins. Phytother Res 1999; 13: 323-328
  • 15 Amoros M, Fauconnier B, Girre RL. In vitro antiviral activity of a saponin from Anagallis arvensis, Primulaceae, against herpes simplex virus and poliovirus. Antiviral Res 1987; 8: 13-25
  • 16 Gosse B, Gnabre J, Bates RB, Dicus CW, Nakkiew P, Huang RCC. Antiviral saponins from Tieghemella heckelii . J Nat Prod 2002; 65: 1942-1944
  • 17 Yang XW, Zhao J, Cui YX, Liu XH, Ma CM, Hattori M, Zhang LH. Anti-HIV-1 protease triterpenoid saponins from the seeds of Aesculus chinensis . J Nat Prod 1999; 62: 1510-1513
  • 18 Shao Y, Chin CK, Ho CT, Ma W, Garrison SA, Huang MT. Anti-tumor activity of the crude saponins obtained from Asparagus . Cancer Lett 1996; 104: 31-36
  • 19 Mimaki Y, Kuroda M, Ide A, Kameyama A, Yokosuka A, Sashida Y. Steroidal saponins from the aerial parts of Dracaena draco and their cytostatic activity on HL-60 cells. Phytochemistry 1999; 50: 805-813
  • 20 Mimaki Y, Kuroda M, Kameyama A, Yokosuka A, Sashida Y. Steroidal saponins from the underground parts of Ruscus aculeatus and their cytostatic activity on HL-60 cells. Phytochemistry 1998; 48: 485-493
  • 21 Mimaki Y, Kuroda M, Kameyama A, Yokosuka A, Sashida Y. Steroidal saponins from the rhizomes of Hosta sieboldii and their cytostatic activity on HL-60 cells. Phytochemistry 1998; 48: 1361-1369
  • 22 Mimaki Y, Kuroda M, Asano T, Sashida Y. Triterpene saponins and lignans from the roots of Pulsatilla chinensis and their cytotoxic activity against HL-60 cells. J Nat Prod 1999; 62: 1279-1283
  • 23 Liu WK, Xu SX, Che CT. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci 2000; 67: 1297-1306
  • 24 Dong M, Feng XZ, Wang BX, Wu LJ, Ikejima T. Two novel furostanol saponins from the rhizomes of Dioscorea panthaica Prain et Burkill and their cytotoxic activity. Tetrahedron 2001; 57: 501-506
  • 25 Dong M, Feng XZ, Wu LJ, Wang BX, Ikejima T. Two new steroidal saponins from the rhizomes of Dioscorea panthaica and their cytotoxic activity. Planta Med 2001; 67: 853-857
  • 26 Fattorusso E, Lanzotti V, Taglialatela-Scafati O, Di Rosa M, Ianaro A. Cytotoxic saponins from bulbs of Allium porrum L. J Agric Food Chem 2000; 48: 3455-3462
  • 27 Weng A, Thakur M, von Mallinckrodt B, Beceren-Braun F, Gilabert-Oriol F, Wiesner B, Eichhorst J, Böttger S, Melzig MF, Fuchs H. Saponins modulate the intracellular trafficking of protein toxins. J Control Release 2012; 164: 74-86
  • 28 Lee Y, Jung JC, Ali Z, Khan IA, Oh S. Anti-inflammatory effect of triterpene saponins isolated from Blue Cohosh (Caulophyllum thalictroides). Evid Based Complement Alternat Med 2012; 2012: 798192
  • 29 Yao Y, Yang X, Shi Z, Ren G. Anti-inflammatory activity of saponins from Quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 macrophages cells. J Food Sci 2014; 79: 1018-1023
  • 30 Xin W, Zhang L, Sun F, Jiang N, Fan H, Wang T, Li Z, He J, Fu F. Escin exerts synergistic anti-inflammatory effects with low doses of glucocorticoids in vivo and in vitro . Phytomedicine 2011; 18: 272-277
  • 31 Kwak WJ, Han CK, Chang HW, Kim HP, Kang SS, Son KH. Loniceroside C, an antiinflammatory saponin from Lonicera japonica . Chem Pharm Bull (Tokyo) 2003; 51: 333-335
  • 32 Just MJ, Recio MC, Giner RM, Cuéllar MJ, Máñez S, Bilia AR, Ríos JL. Anti-inflammatory activity of unusual lupane saponins from Bupleurum fruticescens . Planta Med 1998; 64: 404-407
  • 33 Tapondjou LA, Ponou KB, Teponno RB, Mbiantcha M, Djoukeng JD, Nguelefack TB, Watcho P, Cadenas AG, Park HJ. In vivo anti-inflammatory effect of a new steroidal saponin, mannioside A, and its derivatives isolated from Dracaena mannii . Articles Drug Efficacy And Safety 2008; 31: 653-658
  • 34 Avato P, Bucci R, Tava A, Vitali C, Rosato A, Bialy Z, Jurzysta M. Antimicrobial activity of saponins from Medicago sp.: structure-activity relationship. Phytother Res 2006; 20: 454-457
  • 35 Khanna VG, Kannabiran K. Antimicrobial activity of saponin fractions of the leaves of Gymnema sylvestre and Eclipta prostrata . World J Microbiol Biotechnol 2008; 24: 2737-2740
  • 36 Soetan KO, Oyekunle MA, Aiyelaagbe OO, Fafunso MA. Evaluation of the antimicrobial activity of saponins extract of Sorghum Bicolor L. Moench. Afr J Biotechnol 2006; 5: 2405-2407
  • 37 Sharma A, Sati SC, Sati OP, Sati MD, Kothiyal SK, Semwal DK, Mehta A. A new triterpenoid saponin and antimicrobial activity of ethanolic extract from Sapindus mukorossi Gaertn. J Chem 2013; 1-5
  • 38 Teshima Y, Ikeda T, Imada K, Sasaki K, El-Sayed MA, Shigyo M, Tanaka S, Ito S. Identification and biological activity of antifungal saponins from shallot (Allium cepa L. Aggregatum group). J Agric Food Chem 2013; 61: 7440-7445
  • 39 Zamilpa A, Tortoriello J, Navarro V, Delgado G, Alvarez L. Five new steroidal saponins from Solanum chrysotrichum leaves and their antimycotic activity. J Nat Prod 2002; 65: 1815-1819
  • 40 Escalante AM, Santecchia CB, López SN, Gattuso MA, Gutiérrez Ravelo A, Delle Monache F, Gonzalez Sierra M, Zacchino SA. Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J Ethnopharmacol 2002; 82: 29-34
  • 41 De Lucca AJ, Bland JM, Vigo CB, Cushion M, Selitrennikoff CP, Peter J, Walsh TJ. CAY-I, a fungicidal saponin from Capsicum sp. fruit. Med Mycol 2002; 40: 131-137
  • 42 Rajput ZI, Hu SH, Xiao CW, Arijo AG. Adjuvant effects of saponins on animal immune responses. J Zhejiang Univ Sci B 2007; 8: 153-161
  • 43 Marty-Roix R, Vladimer GI, Pouliot K, Weng D, Buglione-Corbett R, West K, MacMicking JD, Chee JD, Wang S, Lu S, Lien E. Identification of QS-21 as an inflammasome-activating molecular component of saponin adjuvants. J Biol Chem 2015; 291: 1123-1136
  • 44 Soltysik S, Wu JY, Recchia J, Wheeler DA, Newman MJ, Coughlin RT, Kensil CR. Structure/function studies of QS-21 adjuvant: assessment of triterpene aldehyde and glucuronic acid roles in adjuvant function. Vaccine 1995; 13: 1403-1410
  • 45 Kensil CR, Kammer R. QS-21: a water-soluble triterpene glycoside adjuvant. Expert Opin Investig Drugs 1998; 7: 1475-1482
  • 46 Silveira F, Cibulski SP, Varela AP, Marqués JM, Chabalgoity A, de Costa F, Yendo AC, Gosmann G, Roehe PM, Fernández C, Ferreira F. Quillaja brasiliensis saponins are less toxic than Quil A and have similar properties when used as an adjuvant for a viral antigen preparation. Vaccine 2011; 29: 9177-9182
  • 47 Fleck JD, Kauffmann C, Spilki F, Lencina CL, Roehe PM, Gosmann G. Adjuvant activity of Quillaja brasiliensis saponins on the immune responses to bovine herpesvirus type 1 in mice. Vaccine 2006; 24: 7129-7134
  • 48 Cibulski SP, Silveira F, Mourglia-Ettlin G, Teixeira TF, dos Santos HF, Yendo AC, de Costa F, Fett-Neto AG, Gosmann G, Roehe PM. Quillaja brasiliensis saponins induce robust humoral and cellular responses in a bovine viral diarrhea virus vaccine in mice. Comp Immunol Microbiol Infect Dis 2016; 45: 1-8
  • 49 Cibulski SP, Mourglia-Ettlin G, Teixeira TF, Quirici L, Roehe PM, Ferreira F, Silveira F. Novel ISCOMs from Quillaja brasiliensis saponins induce mucosal and systemic antibody production, T-cell responses and improved antigen uptake. Vaccine 2016; 34: 1162-1171
  • 50 Gilabert-Oriol R, Mergel K, Thakur M, von Mallinckrodt B, Melzig MF, Fuchs H, Weng A. Real-time analysis of membrane permeabilizing effects of oleanane saponins. Bioorg Med Chem 2013; 21: 2387-2395
  • 51 Rajananthanan P, Attard GS, Sheikh NA, Morrow WJW. Evaluation of novel aggregate structures as adjuvants: composition, toxicity studies and humoral responses. Vaccine 1999; 17: 715-730
  • 52 Sheikh NA, Rajananthanan P, Attard GS, Morrow WJW. Generation of antigen specific CD8+ cytotoxic T cells following immunization with soluble protein formulated with novel glycoside adjuvants. Vaccine 1999; 17: 2974-2982
  • 53 Tomsik P, Micuda S, Sucha L, Cermakova E, Suba P, Zivny P, Mazurova Y, Knizek J, Niang M, Rezacova M. The anticancer activity of alpha-tomatine against mammary adenocarcinoma in mice. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2013; 157: 153-161
  • 54 Friedman M, Levin CE, Lee SU, Kim HJ, Lee IS, Byun JO, Kozukue N. Tomatine-containing green tomato extracts inhibit growth of human breast, colon, liver, and stomach cancer cells. J Agric Food Chem 2009; 57: 5727-5733
  • 55 Zhao B, Zhou B, Bao L, Yang Y, Guo K. Alpha-tomatine exhibits anti-inflammatory activity in lipopolysaccharide-activated macrophages. Inflammation 2015; 38: 1769-1776
  • 56 Trute A, Gross J, Mutschler E, Nahrstedt A. In vitro antispasmodic compounds of the dry extract obtained from Hedera helix . Planta Med 1997; 63: 125-129
  • 57 Favel A, Steininetz MD, Regli P, Vidal-Olivier E, Elias R, Balansard G. In vitro antifungal activity of triterpenoid saponins. Planta Med 1994; 60: 50-53
  • 58 Ridoux O, Di Giorgio C, Delmas F, Elias R, Mshvildadze V, Dekanosidze G, Kemertelidze E, Balansard G, Timon-David P. In vitro antileishmanial activity of three saponins isolated from ivy, alpha-hederin, beta-hederin and hederacolchiside A(1), in association with pentamidine and amphotericin B. Phytother Res 2001; 15: 298-301
  • 59 Delmas F, Di Giorgio C, Elias R, Gasquet M, Azas N, Mshvildadze V, Dekanosidze G, Kemertelidze E, Timon-David P. Antileishmanial activity of three saponins isolated from ivy, alpha-hederin, beta-hederin and hederacolchiside A1, as compared to their action on mammalian cells cultured in vitro . Planta Med 2000; 66: 343-347
  • 60 Kim JM, Yoon JN, Jung JW, Choi HD, Shin YJ, Han CK, Lee HS, Kang HE. Pharmacokinetics of hederacoside C, an active ingredient in AG NPP709, in rats. Xenobiotica 2013; 43: 985-992
  • 61 Van Rossum TG, Vulto AG, de Man RA, Brouwer JT, Schalm SW. Review article: glycyrrhizin as a potential treatment for chronic hepatitis C. Aliment Pharmacol Ther 1998; 12: 199-205
  • 62 Akamatsu H, Komura J, Asada Y, Niwa Y. Mechanism of anti-inflammatory action of glycyrrhizin: effect on neutrophil functions including reactive oxygen species generation. Planta Med 1991; 57: 119-121
  • 63 Thirugnanam S, Xu L, Ramaswamy K, Gnanasekar M. Glycyrrhizin induces apoptosis in prostate cancer cell lines DU-145 and LNCaP. Oncol Rep 2008; 20: 1387-1392
  • 64 Pompei R, Flore O, Marccialis MA, Pani A, Loddo B. Glycyrrhizic acid inhibits virus growth and inactivates virus particles. Nature 1979; 281: 689-690
  • 65 Ito M, Sato A, Hirabayashi K, Tanabe F, Shigeta S, Baba M, De Clercq E, Nakashima H, Yamamoto N. Mechanism of inhibitory effect of glycyrrhizin on replication of human immunodeficiency virus (HIV). Antiviral Res 1988; 10: 289-298
  • 66 Ashfaq UA, Masoud MS, Nawaz Z, Riazuddin S. Glycyrrhizin as antiviral agent against Hepatitis C Virus. J Transl Med 2011; 9: 1-7
  • 67 Amagaya S, Sugishita E, Ogihara Y, Ogawa S, Okada K, Aizawa T. Comparative studies of the stereoisomers of glycyrrhetinic acid on anti-inflammatory activities. J Pharmacobiodyn 1984; 7: 923-928
  • 68 Hardy ME, Hendricks JM, Paulson JM, Faunce NR. 18β-glycyrrhetinic acid inhibits rotavirus replication in culture. Virol J 2012; 9: 1-7
  • 69 Satomi Y, Nishino H, Shibata S. Glycyrrhetinic acid and related compounds induce G1 arrest and apoptosis in human hepatocellular carcinoma HepG2. Anticancer Res 2005; 25: 4043-4048
  • 70 Sharma G, Kar S, Palit S, Das PK. 18β-Glycyrrhetinic acid induces apoptosis through modulation of Akt/FOXO3a/Bim pathway in human breast cancer MCF-7 cells. J Cell Physiol 2012; 227: 1923-1931
  • 71 Rönnberg B, Fekadu M, Morein B. Adjuvant activity of non-toxic Quillaja saponaria Molina components for use in ISCOM matrix. Vaccine 1995; 13: 1375-1382
  • 72 Sun HX, Xie Y, Ye YP. Advances in saponin-based adjuvants. Vaccine 2009; 27: 1787-1796
  • 73 Agarwal SK, Rastogi RP. Triterpenoid saponins and their genins. Phytochemistry 1974; 13: 2623-2645
  • 74 Schulman JH, Rideal EK. Molecular interaction in monolayers: I–complexes between large molecules. Proc R Soc Lond B Biol Sci 1937; 122: 29-45
  • 75 Gögelein H, Hüby A. Interaction of saponin and digitonin with black lipid membranes and lipid monolayers. Biochim Biophys Acta 1984; 773: 32-38
  • 76 Akiyama T, Takagi S, Sankawa U, Inari S, Saito H. Saponin-cholesterol interaction in the multibilayers of egg yolk lecithin as studied by deuterium nuclear magnetic resonance: digitonin and its analogs. Biochemistry 1980; 19: 1904-1911
  • 77 Nishikawa M, Nojima S, Akiyama T, Sankawa U, Inoue K. Interaction of digitonin and its analogs with membrane cholesterol. J Biochem 1984; 96: 1231-1239
  • 78 Segal R, Mansour M, Zaitschek DV. Effect of ester groups on the haemolytic action of some saponins and sapogenins. Biochem Pharmacol 1966; 15: 1411-1416
  • 79 Korchowiec B, Gorczyca M, Wojszko K, Janikowska M, Henry M, Rogalska E. mpact of two different saponins on the organization of model lipid membranes. Biochim Biophys Acta 2015; 1848: 1963-1973
  • 80 Yu BS, Choi HO. The effects of digitonin and glycyrrhizin on liposomes. Arch Pharm Res 1986; 9: 119-125
  • 81 Sudji IR, Subburaj Y, Frenkel N, García-Sáez AJ, Wink M. Membrane disintegration caused by the steroid saponin digitonin is related to the presence of cholesterol. Molecules 2015; 20: 20146-20160
  • 82 Böttger S, Hofmann K, Melzig MF. Saponins can perturb biologic membranes and reduce the surface tension of aqueous solutions: a correlation?. Bioorg Med Chem 2012; 20: 2822-2828
  • 83 Böttger S, Melzig MF. The influence of saponins on cell membrane cholesterol. Bioorg Med Chem 2013; 21: 7118-7124
  • 84 Wang Y, Zhang Y, Zhu Z, Zhu S, Li Y, Li M, Yu B. Exploration of the correlation between the structure, hemolytic activity, and cytotoxicity of steroid saponins. Bioorg Med Chem 2007; 15: 2528-2532
  • 85 Keukens EA, de Vrije T, Jansen LA, de Boer H, Janssen M, de Kroon AI, Jongen WM, de Kruijff B. Glycoalkaloids selectively permeabilize cholesterol containing biomembranes. Biochim Biophys Acta 1996; 1279: 243-250
  • 86 Armah CN, Mackie AR, Roy C, Price K, Osbourn AE, Bowyer P, Ladha S. The membrane-permeabilizing effect of avenacin A-1 involves the reorganization of bilayer cholesterol. Biophys J 1999; 76: 281-290
  • 87 Augustin JM, Kuzina V, Andersen SB, Bak S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011; 72: 435-457
  • 88 Chwalek M, Lalun N, Bobichon H, Plé K, Voutquenne-Nazabadioko L. Structure–activity relationships of some hederagenin diglycosides: haemolysis, cytotoxicity and apoptosis induction. Biochim Biophys Acta 2006; 1760: 1418-1427
  • 89 Wojciechowski K, Orczyk M, Gutberlet T, Geue T. Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers. Biochim Biophys Acta 2016; 1858: 363-373
  • 90 Sakamoto S, Nakahara H, Uto T, Shoyama Y, Shibata O. Investigation of interfacial behavior of glycyrrhizin with a lipid raft model via a Langmuir monolayer study. Biochim Biophys Acta 2013; 1828: 1271-1283
  • 91 Sakamoto S, Uto T, Shoyama Y. Effect of glycyrrhetinic acid on lipid raft model at the air/water interface. Biochim Biophys Acta 2015; 1848: 434-443
  • 92 Melzig MF, Bader G, Loose R. Investigations of the mechanism of membrane activity of selected triterpenoid saponins. Planta Med 2001; 67: 43-48
  • 93 Roddick JG, Drysdale RB. Destabilization of liposome membranes by the steroidal glycoalkaloid α-tomatine. Phytochemistry 1984; 23: 543-547
  • 94 Morrow WJW, Yang YW, Sheikh NA. Immunobiology of the tomatine adjuvant. Vaccine 2004; 22: 2380-2384
  • 95 Stine KJ, Hercules RK, Duff JD, Walker BW. Interaction of the glycoalkaloid tomatine with DMPC and sterol monolayers studied by surface pressure measurements and Brewster angle microscopy. J Phys Chem B 2006; 110: 22220-22229
  • 96 Keukens EAJ, de Vrije T, van den Boom C, de Waard P, Plasman HH, Thiel F, Chupin V, Jongen WM, de Kruijff B. Molecular basis of glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1995; 1240: 216-228
  • 97 Keukens EAJ, de Vrije T, Fabrie CH, Demel RA, Jongen WMF, de Kruijff B. Dual specificity of sterol-mediated glycoalkaloid induced membrane disruption. Biochim Biophys Acta 1992; 1110: 127-136
  • 98 Walker BW, Manhanke N, Stine KJ. Comparison of the interaction of tomatine with mixed monolayers containing phospholipid, egg sphingomyelin, and sterols. Biochim Biophys Acta 2008; 1778: 2244-2257
  • 99 Ramstedt B, Slotte JP. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length. Biophys J 1999; 76: 908-915
  • 100 Paepenmüller T, Müller-Goymann CC. Influence of Quil A on liposomal membranes. Int J Pharm 2014; 475: 138-146
  • 101 Wojciechowski K, Orczyk M, Gutberlet T, Trapp M, Marcinkowski K, Kobiela T, Geue T. Unusual penetration of phospholipid mono- and bilayers by Quillaja bark saponin biosurfactant. Biochim Biophys Acta 2014; 1838: 1931-1940
  • 102 Rattanapak T, Young K, Rades T, Hook S. Comparative study of liposomes, transfersomes, ethosomes and cubosomes for transcutaneous immunisation: characterisation and in vitro skin penetration. J Pharm Pharmacol 2012; 64: 1560-1569
  • 103 Kohli AK, Alpar HO. Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm 2004; 275: 13-17
  • 104 Segal R, Milo-Goldzweig I, Schupper H, Zaitschek DV. Effect of ester groups on the haemolytic action of sapogenins. II. Esterification with bifunctional acids. Biochem Pharmacol 1970; 19: 2501-2507
  • 105 Segal R, Shatkovsky P, Milo-Goldzweig I. On the mechanism of saponin hemolysis – I. Hydrolysis of the glycosidic bond. Biochem Pharmacol 1974; 23: 973-981
  • 106 Schlösser E, Wulff G. Structural specificity of saponin hemolysis. I. Triterpene saponins and aglycones. Z Naturforsch B 1969; 24: 1284-1290
  • 107 Nakamura T, Inoue K, Nojima S, Sankawa U, Shoji J, Kawasaki T, Shibata S. Interaction of saponins with red blood cells as well as with the phosphatidylcholine liposomal membrane. J Pharmacobiodyn 1979; 2: 374-382
  • 108 Segal R, Milo-Goldzweig I. The susceptibility of cholesterol-depleted erythrocytes to saponin and sapogenin hemolysis. Biochim Biophys Acta 1978; 512: 223-226
  • 109 Oda K, Matsuda H, Murakami T, Katayama S, Ohgitani T, Yoshikawa M. Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants. Biol Chem 2000; 381: 67-74
  • 110 Hase J, Kobashi K, Mitsui K, Namba T, Yoshizaki M, Tomimori T. The structure-hemolysis relationship of oleanolic acid derivatives and inhibition of the saponin-induced hemolysis with sapogenins. J Pharmacobiodyn 1981; 4: 833-837
  • 111 Woldemichael GM, Wink M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa . J Agric Food Chem 2001; 49: 2327-2332
  • 112 Gauthier C, Legault J, Girard-Lalancette K, Mshvildadze V, Pichette A. Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 2009; 17: 2002-2008
  • 113 Barthomeuf C, Debiton E, Mshvildadze V, Kemertelidze E, Balansard G. In vitro activity of hederacolchisid A1 compared with other saponins from Hedera colchica against proliferation of human carcinoma and melanoma cells. Planta Med 2002; 68: 672-675
  • 114 Bissinger R, Modicano P, Alzoubi K, Honisch S, Faggio C, Abed M, Lang F. Effect of saponin on erythrocytes. Int J Hematol 2014; 100: 51-59
  • 115 Sjölander A, Cox JC, Barr IG. ISCOMs: an adjuvant with multiple functions. J Leukoc Biol 1998; 64: 713-723
  • 116 Morein B, Sundquist B, Höglund S, Dalsgaard K, Osterhaus A. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 1984; 308: 457-460
  • 117 Morein B, Lövgren K, Höglund S, Sundquist B. The ISCOM: an immunostimulating complex. Immunol Today 1987; 8: 333-338
  • 118 Jacobsen NE, Fairbrother WJ, Kensil CR, Lim A, Wheeler DA, Powell MF. Structure of the saponin adjuvant QS-21 and its base-catalyzed isomerization product by 1H and natural abundance 13C NMR spectroscopy. Carbohydr Res 1996; 280: 1-14
  • 119 Demana PH, Fehske C, White K, Rades T, Hook S. Effect of incorporation of the adjuvant Quil A on structure and immune stimulatory capacity of liposomes. Immunol Cell Biol 2004; 82: 547-554
  • 120 Morein B. The iscom antigen-presenting system. Nature 1988; 332: 287-288
  • 121 Sun HX, Xie Y, Ye YP. ISCOMs and ISCOMATRIXTM. Vaccine 2009; 27: 4388-4401
  • 122 Claassen I, Osterhaus A. The iscom structure as an immune-enhancing moiety: experience with viral systems. Res Immunol 1992; 143: 531-541
  • 123 Kensil CR, Wu JY, Soltysik S. Structural and immunological characterization of the vaccine adjuvant QS-21. Vaccine Design 1995; 6: 525-541
  • 124 Kersten GFA, Spiekstra A, Beuvery EC, Crommelin DJA. On the structure of immune-stimulating saponin-lipid complexes (iscoms). Biochim Biophys Acta 1991; 1062: 165-171
  • 125 Morein B, Bengtsson KL. Immunomodulation by iscoms, immune stimulating complexes. Methods 1999; 19: 94-102
  • 126 Glauert AM, Dingle JT, Lucy JA. Action of saponin on biological cell membranes. Nature 1962; 196: 952-955
  • 127 Dourmashkin RR, Dougherty RM, Harris RJC. Electron microscopic observations on Rous sarcoma virus and cell membranes. Nature 1962; 194: 1116-1119
  • 128 Pedersen JS, Oliveira CL, Hübschmann HB, Arleth L, Manniche S, Kirkby N, Nielsen HM. Structure of immune stimulating complex matrices and immune stimulating complexes in suspension determined by small-angle x-ray scattering. Biophys J 2012; 102: 2372-2380
  • 129 Pearse MJ, Drane D. ISCOMATRIX adjuvant for antigen delivery. Adv Drug Deliv Rev 2005; 57: 465-474
  • 130 Özel M, Höglund S, Gelderblom HR, Morein B. Quaternary structure of the immunostimulating complex (iscom). J Ultrastruct Mol Struct Res 1989; 102: 240-248
  • 131 De Vries P, Van Wezel AL, Beuvery EC. Process for preparing immunogenic complexes and pharmaceutical composition containing these complexes. US Patent 4900549, 1990
  • 132 Copland MJ, Rades T, Davies NM. Hydration of lipid films with an aqueous solution of Quil A: a simple method for the preparation of immune-stimulating complexes. Int J Pharm 2000; 196: 135-139
  • 133 Demana PH, Davies NM, Vosgerau U, Rades T. Pseudo-ternary phase diagrams of aqueous mixtures of Quil A, cholesterol and phospholipid prepared by the lipid-film hydration method. Int J Pharm 2004; 270: 229-239
  • 134 Kersten GFA, Crommelin DJA. Liposomes and ISCOMS as vaccine formulations. Biochim Biophys Acta 1995; 1241: 117-138
  • 135 Myschik J, Lendemans DG, McBurney WT, Demana PH, Hook S, Rades T. On the preparation, microscopic investigation and application of ISCOMs. Micron 2006; 37: 724-734
  • 136 Reid G. Soluble proteins incorporate into ISCOMs after covalent attachment of fatty acid. Vaccine 1992; 10: 597-602
  • 137 Morein B, Ekström J, Lövgren K. Increased immunogenicity of a non-amphipathic protein (BSA) after inclusion into iscoms. J Immunol Methods 1990; 128: 177-181
  • 138 Morein B, Hu KF, Abusugra I. Current status and potential application of ISCOMs in veterinary medicine. Adv Drug Deliv Rev 2004; 56: 1367-1382
  • 139 Lendemans DG, Myschik J, Hook S, Rades T. Cationic cage-like complexes formed by DC-cholesterol, Quil-A, and phospholipid. J Pharm Sci 2005; 94: 1794-1807