Pneumologie 2017; 71(01): 48-62
DOI: 10.1055/s-0042-117979
Fort- und Weiterbildung
© Georg Thieme Verlag KG Stuttgart · New York

PET/CT: Molekulare Diagnostik und Theragnostik für die Radionuklidtherapie

PET/CT: Molecular Imaging and Theranostics for Radionuclide Therapy
Thorsten Derlin
,
Frank M. Bengel
Further Information

Publication History

Publication Date:
23 January 2017 (online)

Die kombinierte Positronenemissions- und Computertomografie (PET/CT) ist unverzichtbarer Bestandteil vieler diagnostischer Algorithmen in der Pneumologie geworden. Mit ihr können exakte anatomische und molekulare Informationen erfasst werden, sodass Erkrankungen umfassend charakterisiert werden können. Mit 18F-Fluorodeoxyglukose (FDG) steht ein universell einsetzbarer Radiotracer zur Darstellung maligner und entzündlicher Prozesse zur Verfügung.

Kernaussagen

Die kombinierte PET/CT ist seit ihrer Einführung zu einem unverzichtbaren Bestandteil vieler diagnostischer Algorithmen in der Pneumologie geworden. Mit ihr können sowohl exakte anatomische als auch molekulare Informationen erfasst werden, sodass Erkrankungen umfassend charakterisiert werden können.

Mit dem Glukoseanalogon 18F-FDG steht ein universell einsetzbarer Radiotracer zur Darstellung maligner und entzündlicher Prozesse zur Verfügung.

Bei malignen thorakalen Tumoren stellt die 18F-FDG PET/CT inzwischen den bildgebenden Referenzstandard zum nichtinvasiven Staging dar.

Bei entzündlichen Erkrankungen erfolgt ein zunehmender Einsatz der PET/CT zur sensitiven Erfassung aller entzündlichen Veränderungen.

Aktuell erfolgt ein zunehmend breiter Einsatz neuer theragnostischer Radiopharmaka, welche die nichtinvasive Analyse der Expression therapeutischer Targets über die bloße Darstellung des Glukosestoffwechsels hinaus erlauben und eine nachfolgende zielgerichtete Radionuklidtherapie ermöglichen.

Zukünftige Radiopharmakaentwicklungen müssen darauf gerichtet sein, auch bei den soliden thorakalen Tumoren neue Behandlungsoptionen zu eröffnen.

 
  • Literatur

  • 1 Boellaard R, Delgado-Bolton R, Oyen WJ. et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging 2015; 42: 328-354
  • 2 Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med 2009; 50: 11-20
  • 3 Warburg O, Posener K, Negelein E. Über den Stoffwechsel der Tumoren. Biochem Z 1924; 152: 319-344
  • 4 de Geus-Oei LF, van Krieken JH, Aliredjo RP. et al. Biological correlates of FDG uptake in non-small cell lung cancer. Lung Cancer 2007; 55: 79-87
  • 5 Bunyaviroch T, Coleman RE. PET evaluation of lung cancer. J Nucl Med 2006; 47: 451-469
  • 6 Midthun DE, Swensen SJ, Jett JR. Approach to the solitary pulmonary nodule. Mayo Clin Proc 1993; 68: 378-385
  • 7 Winer-Muram H. The solitary pulmonary nodule. Radiology 2006; 239: 34-49
  • 8 Murthy SC, Rice TW. The solitary pulmonary nodule: a primer on differential diagnosis. Semin Thorac Cardiovasc Surg 2002; 14: 239-249
  • 9 National Lung Screening Trial Research Team. Aberle DR. Adams AM. et al. educed lung-cancer mortality with low-dose computed tomographic screening. Engl J Med 2011; 365: 395-409
  • 10 McWilliams A, Tammemagi MC, Mayo JR. et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med 2013; 369: 910-919
  • 11 Cronin P, Dwamena BA, Kelly AM. et al. Solitary pulmonary nodules: meta-analytic comparison of cross-sectional imaging modalities for diagnosis of malignancy. Radiology 2008; 246: 772-782
  • 12 Goeckenjan G, Sitter H, Thomas M. et al. [Prevention, diagnosis, therapy, and follow-up of lung cancer. Interdisciplinary guideline of the German Respiratory Society and the German Cancer Society – abridged version]. Pneumologie 2011; 65: e51-e75
  • 13 Horeweg N, van Rosmalen J, Heuvelmans MA. et al. Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening. Lancet Oncol 2014; 15: 1332-1341
  • 14 Gould MK, Maclean CC, Kuschner WG. et al. Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. JAMA 2001; 285: 914-924
  • 15 Apostolova I, Wiemker R, Paulus T. et al. Combined correction of recovery effect and motion blur for SUV quantification of solitary pulmonary nodules in FDG PET/CT. Eur Radiol 2010; 20: 1868-1877
  • 16 Deppen SA. Blume JD. Kensinger CD. et al. Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: a meta-analysis. JAMA 2014; 312: 1227-1236
  • 17 Schmidt-Hansen M, Baldwin DR, Hasler E. et al. PET-CT for assessing mediastinal lymph node involvement in patients with suspected resectable non-small cell lung cancer. Cochrane Database Syst Rev 2014; 11: CD009519
  • 18 Gould MK, Kuschner WG, Rydzak CE. et al. Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann Intern Med 2003; 139: 879-892
  • 19 Birim O, Kappetein AP, Stijnen T. et al. Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in nonsmall cell lung cancer. Ann Thorac Surg 2005; 79: 375-382
  • 20 Pozo-Rodríguez F, Martín de Nicolás JL, Sánchez-Nistal MA. et al. Accuracy of helical computed tomography and [18F] fluorodeoxyglucose positron emission tomography for identifying lymph node mediastinal metastases in potentially resectable non-small-cell lung cancer. J Clin Oncol 2005; 23: 8348-8356
  • 21 de Langen AJ, Raijmakers P, Riphagen I. et al. The size of mediastinal lymph nodes and its relation with metastatic involvement: a meta-analysis. Eur J Cardiothorac Surg 2006; 29: 26-29
  • 22 MacManus MP, Hicks RJ, Matthews JP. et al. High rate of detection of unsuspected distant metastases by pet in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 2001; 50: 287-293
  • 23 Erasmus JJ, Patz Jr EF, McAdams HP. et al. Evaluation of adrenal masses in patients with bronchogenic carcinoma using 18F-fluorodeoxyglucose positron emission tomography. AJR 1997; 168: 1357-1360
  • 24 Bury T, Barreto A, Daenen F. et al. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med 1998; 25: 1244-1247
  • 25 Pieterman RM, van Putten JW, Meuzelaar JJ. et al. Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 2000; 343: 254-261
  • 26 van Tinteren H, Hoekstra OS, Smit EF. et al. Effectiveness of positron emission tomography in preoperative assessment of patients with suspected non-small cell lung cancer: The PLUS multicentre randomized trial. Lancet 2002; 359: 1388-1393
  • 27 Fischer B, Lassen U, Mortensen J. et al. Preoperative staging of lung cancer with combined PET-CT. N Engl J Med 2009; 361: 32-39
  • 28 Im HJ, Pak K, Cheon GJ. et al. Prognostic value of volumetric parameters of (18)F-FDG PET in non-small-cell lung cancer: a meta-analysis. Eur J Nucl Med Mol Imaging 2015; 42: 241-251
  • 29 Bradley J, Thorstad WL, Mutic S. et al. Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2004; 59: 78-86
  • 30 Nestle U, Kremp S, Schaefer-Schuler A. et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005; 46: 1342-1348
  • 31 Braun JJ, Kessler R, Constantinesco A. et al. 18F-FDG PET/CT in sarcoidosis management: review and report of 20 cases. Eur J Nucl Med Mol Imaging 2008; 35: 1537-1543
  • 32 Sobic-Saranovic D, Grozdic I, Videnovic-Ivanov J. et al. The utility of 18F-FDG PET/CT for diagnosis and adjustment of therapy in patients with active chronic sarcoidosis. J Nucl Med 2012; 53: 1543-1549
  • 33 Keijsers RG, Verzijlbergen EJ, van den Bosch JM. et al. 18F-FDG PET as a predictor of pulmonary function in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2011; 28: 123-129
  • 34 Valeyre D, Prasse A, Nunes H. et al. Sarcoidosis. Lancet 2014; 383: 1155-1167
  • 35 Blankstein R, Osborne M, Naya M. et al. Cardiac positron emission tomography enhances prognostic assessments of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol 2014; 63: 329-336
  • 36 Osborne MT, Hulten EA, Singh A. et al. Reduction in ¹⁸F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 166-174
  • 37 Ohira H, Birnie DH, Pena E. et al. Comparison of (18)F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2016; 43: 259-269
  • 38 Ohira H, Tsujino I, Ishimaru S. et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging 2008; 35: 933-941
  • 39 Lococo F, Perotti G, Cardillo G. et al. Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid. Clin Nucl Med 2015; 40: e183-189
  • 40 Venkitaraman B, Karunanithi S, Kumar A. et al. Role of 68Ga-DOTATOC PET/CT in initial evaluation of patients with suspected bronchopulmonary carcinoid. Eur J Nucl Med Mol Imaging 2014; 41: 856-864
  • 41 Baum RP, Kulkarni HR, Schuchardt C. et al. 177Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. J Nucl Med 2016; 57: 1006-1013
  • 42 Lapa C, Lückerath K, Rudelius M. et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor 4 expression in small cell lung cancer – initial experience. Oncotarget 2016; 7: 9288-9295