Planta Med 2017; 83(03/04): 306-311
DOI: 10.1055/s-0042-115646
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antiparasitic Activity of Diterpenoids Against Trypanosoma cruzi

Sergio Alegre-Gómez
1   Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
,
Paula Sainz
1   Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
,
M. Fátima Simões
2   Universidade Lusófona Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande, Lisboa, Portugal
3   Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa Portugal
,
Patrícia Rijo
2   Universidade Lusófona Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande, Lisboa, Portugal
3   Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa Portugal
,
Cristina Moiteiro
4   Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, Portugal
,
Azucena González-Coloma
1   Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
,
Rafael A. Martínez-Díaz
5   Departamento de Medicina Preventiva, Salud Pública y Microbiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
› Author Affiliations
Further Information

Publication History

received 11 April 2017
revised 08 August 2016

accepted 16 August 2016

Publication Date:
06 September 2016 (online)

Abstract

Twenty-seven diterpenes, including abietanes, labdanes, abeoabietanes, halimanes, and pimaranes, have been evaluated against epimastigote and intracellular amastigote forms of Trypanosoma cruzi and also against LC5 and NCTC cell lines. Royleanones (3, 4, and 5) and a further abietane (12), obtained by purification of Plectranthus spp. extracts, were the most active compounds on epimastigotes, showing IC50 values similar (1.73 µg/mL, 12) or even lower (0.39, 0.99, and 1.20 µg/mL, 3, 4, and 5 respectively) than the positive control nifurtimox (2.3 µg/mL). On intracellular amastigotes, abietanes 3, 4, and 5 showed a significant activity with IC50 values of 0.83, < 0.31, and 0.62 µg/mL, respectively, but were less potent than the positive control nifurtimox (IC50 < 0.16 µg/mL). Compounds 3, 4, and 5 were not cytotoxic to LC5 and NCTC 929 cells at 1 µg/mL.

Supporting Information

 
  • References

  • 1 Rassi jr. A, Rassi A, Marin-Neto A. Chagas disease. Lancet 2010; 375: 1388-1402
  • 2 González-Coloma A, Reina M, Sáenz C, Lacret R, Ruiz-Mesia L, Arán VJ, Sanz J, Martínez-Díaz RA. Antileishmanial, antitrypanosomal and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitol Res 2012; 110: 1381-1392
  • 3 Alasbahi RH, Melzig MF. Plectranthus barbatus: a review of phytochemistry ethnobotanical uses and pharmacology – Part 1. Planta Med 2010; 76: 653-661
  • 4 Lukhoba CW, Simmonds MSJ, Paton AJ. Plectranthus: A review of ethnobotanical uses. J Ethnopharmacol 2006; 103: 1-24
  • 5 Al-Musayeib NM, Mothana RA, Matheeussen A, Cos P, Maes L. In vitro antiplasmodial, antileishmanial and antitrypanosomal activities of selected medicinal plants used in the traditional Arabian Peninsular region. BMC Complement Altern Med 2012; 12: 49-55
  • 6 Tempone AG, Sartorelli P, Teixeira D, Prado FO, Calixto IA, Lorenzi H, Melhem MS. Brazilian flora extracts as source of novel antileishmanial and antifungal compounds. Mem Inst Oswaldo Cruz 2008; 103: 443-449
  • 7 Van Zyl RL, Khan F, Edwards TJ, Drewes SE. Antiplasmodial activities of some abietane diterpenes from the leaves of five Plectranthus species. S Afr J Sci 2008; 104: 62-64
  • 8 Batista O, Duarte A, Nascimento J, Simões MF, de La Torre MC. Structure and antimicrobial activity of diterpenes from roots of Plectranthus hereroensis . J Nat Prod 1994; 57: 858-861
  • 9 Batista O, Simões MF, Duarte A, Valdeira ML, de La Torre MC, Rodriguez B. Antimicrobial abietane from the roots of Plectranthus hereroensis . Phytochemistry 1995; 38: 167-169
  • 10 Dellar JE, Cole MD, Waterman PG. Antimicrobial abietane diterpenoids from Plectranthus elegans . Phytochemistry 1996; 41: 735-738
  • 11 Gaspar-Marques C, Rijo P, Simões MF, Duarte MA, Rodriguez B. Abietanes from Plectranthus grandidentatus and P. hereroensis against methicillin- and vancomycin-resistant bacteria. Phytomedicine 2006; 13: 267-271
  • 12 Ebrahimi SN, Zimmermann S, Zaugg J, Smiesko M, Brun R, Hamburger M. Abietane diterpenoids from Salvia sahendica – Antiprotozoal activity and determination of their absolute configurations. Planta Med 2013; 79: 150-156
  • 13 Pirttimaa M, Nasereddin A, Kopelyanskiy D, Kaiser M, Yli-Kauhaluoma J, Oksman-Caldentey KM, Brun R, Jaffe CL, Moreira VM, Alakurtti S. Abietane-type diterpenoid amides with highly potent and selective activity against Leishmania donovani and Trypanosoma cruzi . J Nat Prod 2016; 79: 362-368
  • 14 Cerqueira F, Cordeiro-Da-Silva A, Gaspar-Marques C, Simões F, Pinto MMM, Nascimento MSJ. Effect of abietane diterpenes from Plectranthus grandidentatus on T- and B-lymphocyte proliferation. Bioorg Med Chem 2004; 12: 217-223
  • 15 Burmistrova O, Simões MF, Rijo P, Quintana J, Bermejo J, Estévez F. Antiproliferative activity of abietane diterpenoids against human tumor cells. J Nat Prod 2013; 76: 1413-1423
  • 16 Burmistrova O, Perdomo J, Simões MF, Rijo P, Quintana J, Estévez F. The Abietane diterpenoid parvifloron D is a potent apototic inducer in human leukemia cells. Phytomedicine 2015; 22: 1009-1016
  • 17 Rijo P, Simões MF, Francisco AP, Rojas R, Gilman RH, Vaisberg AJ, Rodríguez B, Moiteiro C. Antimycobacterial metabolites from Plectranthus: royleanone derivatives against Mycobacterium tuberculosis strains. Chem Biodivers 2010; 7: 922-932
  • 18 Rijo P, Duarte A, Francisco AP, Semedo-Lemsaddek T, Simões MF. In vitro antimicrobial activity of royleanone derivatives against gram-positive bacterial pathogens. Phytother Res 2014; 28: 76-81
  • 19 Mothana RA, Al-Said MS, Al-Musayeib NM, El Gamal AA, Al-Massarani SM, Al-Rehaily AJ, Abdulkader M, Maes L. In vitro antiprotozoal activity of abietane diterpenoids isolated from Plectranthus barbatus Andr. Int J Mol Sci 2014; 15: 8360-8371
  • 20 Rijo P, Simões MF, Duarte A, Rodríguez B. Isopimarane diterpenoids from Aeollanthus rydingianus and their antimicrobial activity. Phytochemistry 2009; 70: 1161-1165
  • 21 Hanson JR. Diterpenoids of terrestrial origin. Nat Prod Rep 2011; 28: 1755-1772
  • 22 Mendoza DT, Ureña-González LD, Ortega-Barría E, Capson TL, Rios LC. Five new cassane diterpenes from Myrospermum frutescens with activity against Trypanosoma cruzi . J Nat Prod 2003; 66: 928-932
  • 23 Uchiyama N, Kiuchi F, Ito M, Honda G, Takeda Y, Khodzhimatov OK, Ashurmetov OA. New icetexane and 20 norabietane diterpenes with trypanocidal activity from Dracocephalum komarovi . J Nat Prod 2003; 66: 128-131
  • 24 Sanchez AM, Jimenez-Ortiz V, Sartor T, Tonn CE, García EE, Nieto M, Burgos MH, Sosa MA. A novel icetexane diterpene, 5-epi-icetexone from Salvia gilliessi is active against Trypanosoma cruzi . Acta Trop 2006; 98: 118-124
  • 25 Menna-Barreto RF, Laranja GA, Silva MC, Coelho MG, Paes MC, Oliveira MM, de Castro SL. Anti-Trypanosoma cruzi activity of Pterodon pubescens seed oil: geranylgeraniol as the major bioactive component. Parasitol Res 2008; 103: 111-117
  • 26 Lozano E, Strauss M, Spina R, Cifuente D, Tonn C, Rivarola HW, Sosa MA. The in vivo trypanocidal effect of the diterpene 5-epi-icetexone obtained from Salvia gilliesii . Parasitol Int 2016; 65: 23-26
  • 27 Machumi F, Samoylenko V, Yenesew A, Derese S, Midiwo JO, Wiggers FT, Jacob MR, Tekwani BL, Khan SI, Walker LA, Muhammad I. Antimicrobial and antiparasitic abietane diterpenoids from the roots of Clerodendrum eriophyllum . Nat Prod Commun 2010; 5: 853-858
  • 28 Izumi E, Ueda-Nakamura T, Dias Filho BP, Veiga Júnior VF, Nakamura CV. Natural products and Chagasʼ disease: a review of plant compounds studied for activity against Trypanosoma cruzi . Nat Prod Rep 2011; 28: 809-823
  • 29 Simões MF, Rijo P, Duarte A, Barbosa D, Matias D, Delgado J, Cirilo N, Rodríguez B. Two new diterpenoids from Plectranthus species. Phytochem Lett 2010; 3: 221-225
  • 30 Simões MF, Rijo P, Duarte A, Matias D, Rodríguez B. An easy and stereoselective rearrangement of an abietane diterpenoid into a bioactive microstegiol derivative. Phytochem Lett 2010; 3: 234-237
  • 31 Rijo P, Gaspar-Marques C, Simões MF, Jimeno ML, Rodríguez B. Further diterpenoids from Plectranthus ornatus and P. grandidentatus . Biochem Syst Ecol 2007; 35: 215-221
  • 32 Rijo P, Simões MF, Rodríguez B. Structural and spectral assignment of three forskolin-like diterpenoids isolated from Plectranthus ornatus . Magn Reson Chem 2005; 43: 595-598
  • 33 Rijo P, Rodríguez B, Duarte A, Simões MF. Antimicrobial properties of Plectranthus ornatus extracts, 11-acetoxyhalima-5,13-dien-15-oic acid metabolite and its derivatives. Nat Prod J 2011; 1: 57-64
  • 34 Martínez-Díaz RA, Ibáñez-Escribano A, Burillo J, de las Heras L, del Prado G, Agulló-Ortuño MT, Julio LF, González-Coloma A. Trypanocidal, trichomonacidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil. Mem Inst Oswaldo Cruz 2015; 110: 639-699
  • 35 Fonseca-Berzal C, Merchán Arenas DR, Romero Bohórquez AR, Escario JA, Kouznetsov VV, Gómez-Barrio A. Selective activity of 2,4-diaryl-1,2,3,4- tetrahydroquinolines on Trypanosoma cruzi epimastigotes and amastigotes expressing β-galactosidase. Bioorg Med Chem Lett 2013; 23: 4851-4856
  • 36 Buckner FS, Verlinde CL, La Flamme AC, Van Voorhis WC. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 1996; 40: 2592-2597
  • 37 Mossman T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63