Drug Res (Stuttg) 2017; 67(01): 32-37
DOI: 10.1055/s-0042-115637
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Evaluation of Different Oral Formulations of Clindamycin Extended Release in Dogs

E. Ortega
1   Department of Physiology and Pharmacology, Facultad de Medicina Veterinaria y Zootecnia of the Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. México
,
L. Gutiérrez
1   Department of Physiology and Pharmacology, Facultad de Medicina Veterinaria y Zootecnia of the Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. México
,
M. J. Bernad
2   Department of Pharmaceutical Technology, Facultad de Química of the Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P., México
,
F. Salmerón
3   Department of Genetics and Biostatistics, Facultad de Medicina Veterinaria y Zootecnia of the Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P., México
,
I. Juárez
1   Department of Physiology and Pharmacology, Facultad de Medicina Veterinaria y Zootecnia of the Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. México
,
D. Vargas
1   Department of Physiology and Pharmacology, Facultad de Medicina Veterinaria y Zootecnia of the Universidad Nacional Autónoma de México, Delegación Coyoacán, Ciudad de México C.P. México
› Author Affiliations
Further Information

Publication History

received 30 March 2016

accepted 18 August 2016

Publication Date:
14 September 2016 (online)

Abstract

The purpose of this study was to evaluate the pharmacokinetics of extended-release formulations (ERFs) of clindamycin with polymeric-based matrices. In a crossover study, 21 healthy adult dogs were randomly assigned (in groups of 7) to receive a single oral dose (20 mg/kg) of clindamycin without excipients (control) or an extended-release formulation containing clindamycin+Hydroxypropyl methylcellulose (HPMC)+poloxamer at a ratio of 1 : 0.04 : 0.5 (ERF1) or containing clindamycin+HPMC+acrylic acid polymer (AAP) at the same proportions (ERF2). Serum clindamycin concentrations were determined for pharmacokinetic analysis prior to and at several time intervals after each treatment. Following the oral administration in study dogs, each ERF resulted in therapeutic serum clindamycin concentrations for 60 h, whereas the control treatment resulted in therapeutic serum clindamycin concentrations for only 12 h. All pharmacokinetic parameters for ERF1 and ERF2 were significantly different from those of the control treatment. These results indicate that both ERFs composed of a polymeric matrix containing clindamycin, HPMC, and AAP or poloxamer demonstrated an adequate pharmacokinetic-pharmacodynamic relationship for a time-dependent drug and provided a longer release period than clindamycin alone following oral administration in dogs. Given that the minimum effective serum concentration of clindamycin is 0.3 µg/mL, a dose interval of 60 h could be achieved for each tested ERF. This minimum inhibitory concentration has the potential to be effective against several susceptible bacteria involved in infections in dogs. The treatment of dogs with either ERF may provide several benefits over treatment with clindamycin alone.

 
  • References

  • 1 Papich MG, Riviere JE. Lincosamides. In: Papich MG, Riviere JE. (eds.). Veterinary Pharmacology and therapeutics. 9th ed. Ames, Iowa: Wiley-Blackwell; 2003: 963-968
  • 2 Chambers HF. Clindamycin. In: Brunton LL, Lazo JS, Parker KL. (eds.). Goodman and Gilman’s A. The pharmacological basis of therapeutics. 11th ed. USA: McGraw-Hill; 2006: 1028-1035
  • 3 Nielsen D, Walser C, Kodan G et al. Effects of treatment with clindamycin hidrochloryde on progression of canine periodontal disease after ultrasonic scaling. Vet Ther 2000; 1: 150-158
  • 4 Kaya M, Okumus Z, Yanmas LE et al. Post-trauamatic osteomyelitis and its treatment in a dog. Pak Vet J 2011; 31: 371-374
  • 5 Scott DW, Beningo KE, Miller WH et al. Efficacy of clindamycin hydrochloride capsules for the treatment of deep pyoderma due to Staphylococcus intermedius infection in dogs. Can Vet J 1998; 39: 753-756
  • 6 Adams VJ, Campbell JR, Waldner CL et al. Evaluation of client compliance with short-term administration of antimicrobials to dogs. JAVMA 2005; 226: 567-574
  • 7 Davey P, Parker S. Cost effectiveness of once-daily oral antimicrobial therapy. J Clin Pharmacol 1992; 32: 706-710
  • 8 Saini SD, Schoenfeld P, Kaulback K et al. Effect of medication dosing frequency on adherence in chronic diseases. Am J Manag Care 2009; 15: 22-33
  • 9 Wynalda MA, Hutzler JM, Koets MD et al. In vitro metabolism of clindamycin in human liver and intestinal microsomes. Drug Metabolism and Disposition 2003; 31: 878-887
  • 10 Arciniegas SM, Gutiérrez L, Caballero SC et al. Pharmacokinetics of an oral extended-release formulation of doxycycline hyclate containing acrylic acid and polymethacrylate in dogs. Am J Vet Res 2015; 76: 367-372
  • 11 Arciniegas SM, Gutiérrez L, Bernad MJ et al. Comparative pharmacokinetics of a new oral long-acting formulation of doxycycline hyclate: A canine clinical trial. Pharmaceutical Sci 2015; 80: 9-15
  • 12 Gutiérrez L, Velasco Z, Vázquez C et al. Pharmacokinetics of an injectable long-acting formulation of doxycycline hyclate in dogs. Acta Vet Scand 2012; 54: 35-41
  • 13 Vargas-Estrada D, Juarez I, Gutiérrez L et al. Serum and tissue concentrations of an experimental long – acting parenteral formulation of doxycycline-hyclate in wistar rats. Arzneim Forsch/DrugRes 2008; 58: 310-316
  • 14 Arora S, Ali J, Ahuja A et al. Pulsatile drug delivery systems: An approach for controlled drug delivery. Indian J Pharm Sci 2006; 68: 295-300
  • 15 Cannizzaro SM, Langer RS. Polymeric systems for controlled drug release. Chem Rev 1999; 99: 3181-3198
  • 16 Kshirsagar NA. Drug Delivery systems. Indian Journal of Pharmacology 2000; 32: S54-S61
  • 17 Tiwari G, Tiwari R, Sriwastawa B et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2: 2-11
  • 18 Verma RK, Garg S. Current status of drug delivery technologies and future directions. Pharmaceutical Technology On-line 2001; 25: 1-14
  • 19 Lee BJ, Ryu SG, Cui JH. Formulation and release characteristics of hydroxypropyl methylcellulose matrix tablet containing melatonin. Drug Dev Ind Pharm 1999; 25: 493-501
  • 20 Sako K, Sawada T, Nakashima H et al. Influence of water soluble fillers in hydroxypropylmethylcellulose matrices on in vitro and in vivo drug release. J Control Release 2002; 81: 165-172
  • 21 Lu G, Jun HW. Diffusion studies of methotrexate in Carbopol and poloxamer gels. Int J Pharm 1998; 160: 1-9
  • 22 Li CL, Martini LG, Ford JL et al. The use of hypromellose in oral drug delivery. J Pharm Pharmacol 2005; 57: 533-546
  • 23 Rowe RC, Shaeskey PJ, Cook WG . Carbomer, Poloxamer, Hypromellose and Poloxamer. In: Handbook of Pharmaceutical Excipients. 7th ed. Philadelphia, USA: Pharmaceutical Press; 2012: 118-121, 373–376, 573–577
  • 24 SAGARPA NOM-062-ZOO-1999. Norma Oficial Mexicana, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio; Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación
  • 25 US pharmacopeia and national formulary . USP 30-NF 25. Vol 2. Rockville, Md: US Pharmacopeia Convention; 2007: 98 131
  • 26 Jorgensen JH, Crawford SA, McElmeel ML et al. Detection of inducible clindamycin resistance of Staphylococci in conjunction with performance of automated broth susceptibility testing. J Clin Microbiol 2004; 42: 1800-1802
  • 27 Wagner JG. Simple linear models. In: Wagner JG. (ed.). Pharmacokinetics for the pharmaceutical scientist. Lancaster, Pa: Technomic Publishing Co; 1993: 1-14
  • 28 Moffat AC, Osselton MD, Widdop B. Clarke’s analysis of drugs and poisons. 4th edition. Pharmaceutical Press; 2011: 1124
  • 29 Patel HR, Patel RP, Patel MM. Poloxamers: A pharmaceutical excipients with therapeutics behaviors. lnt J PharmTech Res 2009; 1: 299-303
  • 30 Patel K, Vadalia KR, Patel JK. Development and evaluation of in situ gelling system for treatment of periodontitis. Am J PharmTech Res 2012; 2: 104-123
  • 31 Paavonen J, Mangioni C, Martin MA et al. Vaginal clindamycin and oral metronidazole for bacterial vaginosis: a randomized trial. Obstet Gynecol 2000; 96: 256-260
  • 32 Saridomichelakis MN, Athanasiou LV, Chatzis MK et al. Concentrations of clindamycin hydrochloride in homogenates of normal dog skin when administered at two oral dosage regimens. Vet Quart 2013; 33: 7-12
  • 33 Saridomichelakis MN, Athanasiou LV, Salame M et al. Serum pharmacokinetics of clindamycin hydrochloride in normal dogs when administered at two dosage regimens. Journal of Veterinary Dermatology 2011; 22: 429-435
  • 34 Lavy E, Ziv G, Shem-Tov M et al. Pharmacokinetics of clindamycin HCl administered intravenously, intramusculary and subcutaneously to dogs. J Vet Pharmacol Ther 1999; 22: 261-265
  • 35 Batzias GC, Delis GC, Athanasiou LV. Clindamicyn, Bioavailability and pharmacokinetics following oral administration of clindamycin hydrochloride capsules in dogs. Vet J 2005; 170: 339-345
  • 36 Wen H, Park K. Oral controlled release formulation. In: Design and drug delivery (Theory to Practice). Ames, Iowa: Wiley-Blackwell; 2010. 78, 87, 88 94-97
  • 37 Batzias GC, Delis GA, Koutsoviti-Papadopoulou M. A new HPLC/UV method for the determination of clindamycin in dog blood serum. J Pharm Biomed Anal 2004; 35: 545-554
  • 38 Flaherty JF, Rodondi LC, Guglielmo J et al. Comparative pharmacokinetics and serum inhibitory activity of clindamycin in different dosing regimens. Antimicrob Agents chemother 1988; 32: 1825-1829