Planta Med 2016; 82(16): 1389-1394
DOI: 10.1055/s-0042-115034
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Narciclasine – an Amaryllidaceae Alkaloid with Potent Antitumor and Anti-Inflammatory Properties

Robert Fürst
Institute of Pharmaceutical Biology, Biocenter, Goethe University, Frankfurt/Main, Germany
› Author Affiliations
Further Information

Publication History

received 21 July 2016
revised 05 August 2016

accepted 08 August 2016

Publication Date:
19 August 2016 (online)

Abstract

The isocarbostyril alkaloid narciclasine, also known as lycoricidinol, was discovered in Narcissus species (Amaryllidaceae) in 1967. A few years later, the 60S subunit of ribosomes, and thus protein biosynthesis, were shown to be directly targeted by narciclasine. Due to its selective and highly potent cytotoxic action on cancer cells, narciclasine was intensively investigated as an antitumor compound both in vitro and in vivo. However, narciclasine did not show a strong pharmacological activity in animal tumor models. During the last decade, new fascinating actions, mechanisms, and targets of narciclasine have emerged. This review intends to present a brief but comprehensive overview of these novel insights. Beneficial therapeutical actions have been reported particularly in brain tumor models. The translation elongation factor eEF1A, which does not only participate in protein biosynthesis but also in the regulation of the actin cytoskeleton, was discovered as new direct target. Moreover, narciclasine was found to trigger actin stress fiber formation via the activation of the small GTPase RhoA. Progress has also been made regarding the pharmacokinetic characterization of the alkaloid. The synthesis of a great number of narciclasine derivatives led to a substantial understanding of its pharmacophore and of the structure-activity relationships. However, an optimized compound did not result from these efforts. Most importantly, a new field of indication has emerged: Narciclasine was proven to exert profound anti-inflammatory actions in vivo. Taken together, there has been a strong advance in the preclinical knowledge about the alkaloid. Nevertheless, narciclasine has not been tested in human clinical trials up to now.

 
  • References

  • 1 Riddle JM. Ancient and medieval chemotherapy for cancer. Isis 1985; 76: 319-330
  • 2 Gerrard AW. The proximate principles of the Narcissus pseudonarcissus . Pharm J 1877; 8: 214-215
  • 3 Nakagawa Y, Uyeo S, Yayima H. The double bond in lycorine. Chem Ind 1956; 42: 1238-1239
  • 4 Christenhusz MJM, Byng JW. The number of known plants species in the world and its annual increase. Phytotaxa 2016; 261: 201-217
  • 5 Takos AM, Rook F. Towards a molecular understanding of the biosynthesis of amaryllidaceae alkaloids in support of their expanding medical use. Int J Mol Sci 2013; 14: 11713-11741
  • 6 Ghosal S, Saini K, Razdan S. Crinium alkaloids: their chemistry and biology. Phytochem 1985; 24: 2141-2156
  • 7 Evidente A, Kornienko A. Anticancer evaluation of structurally diverse Amaryllidaceae alkaloids and their synthetic derivatives. Phytochem Rev 2009; 8: 449-459
  • 8 Kornienko A, Evidente A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem Rev 2008; 108: 1982-2014
  • 9 Jin Z. Amaryllidaceae and Sceletium alkaloids. Nat Prod Rep 2013; 30: 849-868
  • 10 Unver N. New skeletons and new concepts in Amaryllidaceae alkaloids. Phytochem Rev 2007; 6: 125-135
  • 11 He M, Qu C, Gao O, Hu X, Hong X. Biological and pharmacological activities of Amaryllidaceae alkaloids. RSC Adv 2015; 5: 16562-16574
  • 12 Ceriotti G. Narciclasine: an antimitotic substance from Narcissus bulbs. Nature 1967; 213: 595-596
  • 13 Piozzi F, Fuganti C, Mondelli R, Ceriotti G. Narciclasine and narciprimine. Tetrahedron 1968; 24: 1119-1131
  • 14 Savona G, Piozzi F, Marino ML. Structure and synthesis of permethylnarciprimine. J Chem Soc Chem Commun 1970; 16: 1006
  • 15 Mondon A, Krohn K. Struktur und Synthese des Narciprimins. Tetrahedron Lett 1970; 11: 2123-2126
  • 16 Immirizi A, Fuganti C. The crystal and molecular structure of narciclasine tetra-acetate. J Chem Soc Chem Commun 1972; 4: 240
  • 17 Okamoto T, Torii Y, Isogai Y. Lycoricidinol and lycoricidine, new plant-growth regulators in the bulbs of Lycoris radiata . Chem Pharm Bull 1968; 16: 1860-1864
  • 18 Mondon A, Krohn K. Synthesis of narciprimine and related compounds. Chem Ber 1972; 105: 3726-3747
  • 19 Ingrassia L, Lefranc F, Mathieu V, Darro F, Kiss R. Amaryllidaceae isocarbostyril alkaloids and their derivatives as promising antitumor agents. Transl Oncol 2008; 1: 1-13
  • 20 Ghosal S, Lochan R, Ashutosh Kumar Y, Srivastava RS. Alkaloids of Haemanthus kalbreyeri . Phytochemistry 1985; 24: 1825-1828
  • 21 Ghosal S, Singh SK, Srivastava RS. Alkaloids of Zephyranthes flava . Phytochemistry 1986; 25: 1975-1978
  • 22 Abou-Donia AH, De Giulio A, Evidente A, Gaber M, Habib AA, Lanzetta R, Seif El Din AA. Narciclasine-4-O-beta-D-glucopyranoside, a glucosyloxy amidic phenanthridone derivative from Pancratium maritimum . Phytochemistry 1991; 30: 3445-3448
  • 23 Pettit GR, Cragg GM, Singh SB, Duke JA, Doubek DL. Antineoplastic agents: 162. Zephyranthes candida . J Nat Prod 1990; 53: 176-178
  • 24 Pettit GR, Meng Y, Herald DL, Knight JC, Day JF. Antineoplastic agents. 553. The Texas grasshopper Brachystola magna . J Nat Prod 2005; 68: 1256-1258
  • 25 Rigby JH, Mateo ME. Total synthesis of (+)-narciclasine. J Am Chem Soc 1997; 119: 12655-12656
  • 26 Ghavre M, Froese J, Pour M, Hudlicky T. Synthesis of Amaryllidaceae constituents and unnatural derivatives. Angew Chem Int Edit 2016; 55: 5642-5691
  • 27 Maji B, Yamamoto H. Catalytic enantioselective nitroso Diels-Alder reaction. J Am Chem Soc 2015; 137: 15957-15963
  • 28 Kilgore MB, Kutchan TM. The Amaryllidaceae alkaloids: biosynthesis and methods for enzyme discovery. Phytochem Rev 2016; 15: 317-337
  • 29 Fuganti C, Mazza M. Late intermediates in the biosynthesis of narciclasine. J Chem Soc Chem Commun 1971; 21: 1388-1389
  • 30 Fuganti C, Staunton J, Battersby AR. The biosynthesis of narciclasine. J Chem Soc Chem Commun 1971; 19: 1154-1155
  • 31 Fuganti C. Evidence for intermediacy of 11-hydroxyvittatine in biosynthesis of narciclasine. Gazz Chim Ital 1973; 103: 1255-1264
  • 32 Fuganti C, Mazza M. The absolute configuration of narciclasine: a biosynthetic approach. J Chem Soc Chem Commun 1972; 4: 239
  • 33 Diamond A, Desgagne-Penix I. Metabolic engineering for the production of plant isoquinoline alkaloids. Plant Biotechnol J 2016; 14: 1319-1328
  • 34 Carrasco L, Fresno M, Vazquez D. Narciclasine: an antitumour alkaloid which blocks peptide bond formation by eukaryotic ribosomes. FEBS Lett 1975; 52: 236-239
  • 35 Jimenez A, Sanchez L, Vazquez D. Yeast ribosomal sensitivity and resistance to the Amaryllidaceae alkaloids. FEBS Lett 1975; 60: 66-70
  • 36 Jimenez A, Sanchez L, Vazquez D. Simultaneous ribosomal resistance to trichodermin and anisomycin in Saccharomyces cerevisiae mutants. Biochim Biophys Acta 1975; 383: 427-434
  • 37 Jimenez A, Sanchez L, Vazquez D. Location of resistance to the alkaloid narciclasine in the 60S ribosomal subunit. FEBS Lett 1975; 55: 53-56
  • 38 Baez A, Angoso G, Vazquez D. Labelling of narciclasine by tritium exchange. Biochimie 1977; 59: 751-753
  • 39 Jimenez A, Santos A, Alonso G, Vazquez D. Inhibitors of protein synthesis in eukarytic cells. Comparative effects of some amaryllidaceae alkaloids. Biochim Biophys Acta 1976; 425: 342-348
  • 40 DallʼAcqua F, Rodighiero C. Investigations on the mechanism of action of narciclasine. Farmaco Sci 1977; 32: 67-75
  • 41 Rodriguez-Fonseca C, Amils R, Garrett RA. Fine structure of the peptidyl transferase centre on 23S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. J Mol Biol 1995; 247: 224-235
  • 42 Garreau de Loubresse N, Prokhorova I, Holtkamp W, Rodnina MV, Yusupova G, Yusupov M. Structural basis for the inhibition of the eukaryotic ribosome. Nature 2014; 513: 517-522
  • 43 Pettit GR, Pettit 3rd GR, Backhaus RA, Boyd MR, Meerow AW. Antineoplastic agents, 256. Cell growth inhibitory isocarbostyrils from Hymenocallis . J Nat Prod 1993; 56: 1682-1687
  • 44 Van Goietsenoven G, Mathieu V, Lefranc F, Kornienko A, Evidente A, Kiss R. Narciclasine as well as other Amaryllidaceae isocarbostyrils are promising GTP-ase targeting agents against brain cancers. Med Res Rev 2013; 33: 439-455
  • 45 Dumont P, Ingrassia L, Rouzeau S, Ribaucour F, Thomas S, Roland I, Darro F, Lefranc F, Kiss R. The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts. Neoplasia 2007; 9: 766-776
  • 46 Ingrassia L, Lefranc F, Dewelle J, Pottier L, Mathieu V, Spiegl-Kreinecker S, Sauvage S, El Yazidi M, Dehoux M, Berger W, Van Quaquebeke E, Kiss R. Structure-activity relationship analysis of novel derivatives of narciclasine (an Amaryllidaceae isocarbostyril derivative) as potential anticancer agents. J Med Chem 2009; 52: 1100-1114
  • 47 Jitsuno M, Yokosuka A, Hashimoto K, Amano O, Sakagami H, Mimaki Y. Chemical constituents of Lycoris albiflora and their cytotoxic activities. Nat Prod Commun 2011; 6: 187-192
  • 48 Lefranc F, Sauvage S, Van Goietsenoven G, Megalizzi V, Lamoral-Theys D, Debeir O, Spiegl-Kreinecker S, Berger W, Mathieu V, Decaestecker C, Kiss R. Narciclasine, a plant growth modulator, activates Rho and stress fibers in glioblastoma cells. Mol Cancer Ther 2009; 8: 1739-1750
  • 49 Van Goietsenoven G, Hutton J, Becker JP, Lallemand B, Robert F, Lefranc F, Pirker C, Vandenbussche G, Van Antwerpen P, Evidente A, Berger W, Prevost M, Pelletier J, Kiss R, Kinzy TG, Kornienko A, Mathieu V. Targeting of eEF1A with Amaryllidaceae isocarbostyrils as a strategy to combat melanomas. FASEB J 2010; 24: 4575-4584
  • 50 Mateyak MK, Kinzy TG. eEF1A: thinking outside the ribosome. J Biol Chem 2010; 285: 21209-21213
  • 51 Evidente A, Kireev AS, Jenkins AR, Romero AE, Steelant WF, Van Slambrouck S, Kornienko A. Biological evaluation of structurally diverse amaryllidaceae alkaloids and their synthetic derivatives: discovery of novel leads for anticancer drug design. Planta Med 2009; 75: 501-507
  • 52 Mikami M, Kitahara M, Kitano M, Ariki Y, Mimaki Y, Sashida Y, Yamazaki M, Yui S. Suppressive activity of lycoricidinol (narciclasine) against cytotoxicity of neutrophil-derived calprotectin, and its suppressive effect on rat adjuvant arthritis model. Biol Pharm Bull 1999; 22: 674-678
  • 53 Yui S, Mikami M, Mimaki Y, Sashida Y, Yamazaki M. Inhibition effect of Amaryllidaceae alkaloids, lycorine and lycoricidinol on macrophage TNF-alpha production. Yakugaku Zasshi 2001; 121: 167-171
  • 54 Yamazaki Y, Kawano Y. Inhibitory effects of herbal alkaloids on the tumor necrosis factor-alpha and nitric oxide production in lipopolysaccharide-stimulated RAW264 macrophages. Chem Pharm Bull (Tokyo) 2011; 59: 388-391
  • 55 Lubahn C, Schaller JA, Shewmacker E, Wood C, Bellinger DL, Byron D, Melody N, Pettit GR, Lorton D. Preclinical efficacy of sodium narcistatin to reduce inflammation and joint destruction in rats with adjuvant-induced arthritis. Rheumatol Int 2012; 32: 3751-3760
  • 56 Fuchs S, Hsieh LT, Saarberg W, Erdelmeier CA, Wichelhaus TA, Schaefer L, Koch E, Fürst R. Haemanthus coccineus extract and its main bioactive component narciclasine display profound anti-inflammatory activities in vitro and in vivo . J Cell Mol Med 2015; 19: 1021-1032
  • 57 Gabrielsen B, Monath TP, Huggins JW, Kefauver DF, Pettit GR, Groszek G, Hollingshead M, Kirsi JJ, Shannon WM, Schubert EM, DaRe J, Ugarkar B, Ussery MA, Phelan MJ. Antiviral (RNA) activity of selected Amaryllidaceae isoquinoline constituents and synthesis of related substances. J Nat Prod 1992; 55: 1569-1581
  • 58 Onishi Y, Kawano Y, Yamazaki Y. Lycorine, a candidate for the control of period length in mammalian cells. Cell Physiol Biochem 2012; 29: 407-416
  • 59 Kim J, Park Y, Chun YS, Cha JW, Kwon HC, Oh MS, Chung S, Yang HO. Effect of Lycoris chejuensis and its active components on experimental models of Alzheimerʼs disease. J Agric Food Chem 2015; 63: 6979-6988
  • 60 Baez A, Vazquez D. Binding of [3H]narciclasine to eukaryotic ribosomes. A study on a structure-activity relationship. Biochim Biophys Acta 1978; 518: 95-103
  • 61 Mondon A, Krohn K. Chemistry of narciclasine. Chem Ber 1975; 108: 445-463
  • 62 McNulty J, Mao J, Gibe R, Mo R, Wolf S, Pettit GR, Herald DL, Boyd MR. Studies directed towards the refinement of the pancratistatin cytotoxic pharmacophore. Bioorg Med Chem Lett 2001; 11: 169-172
  • 63 McNulty J, Larichev V, Pandey S. A synthesis of 3-deoxydihydrolycoricidine: refinement of a structurally minimum pancratistatin pharmacophore. Bioorg Med Chem Lett 2005; 15: 5315-5318
  • 64 Rinner U, Hillebrenner HL, Adams DR, Hudlicky T, Pettit GR. Synthesis and biological activity of some structural modifications of pancratistatin. Bioorg Med Chem Lett 2004; 14: 2911-2915
  • 65 Pettit GR, Eastham SA, Melody N, Orr B, Herald DL, McGregor J, Knight JC, Doubek DL, Pettit 3rd GR, Garner LC, Bell JA. Isolation and structural modification of 7-deoxynarciclasine and 7-deoxy-trans-dihydronarciclasine. J Nat Prod 2006; 69: 7-13
  • 66 Pettit GR, Melody N, Simpson M, Thompson M, Herald DL, Knight JC. Antineoplastic agents 500. Narcistatin. J Nat Prod 2003; 66: 92-96
  • 67 McNulty J, Nair JJ, Singh M, Crankshaw DJ, Holloway AC, Bastida J. Selective cytochrome P450 3A4 inhibitory activity of Amaryllidaceae alkaloids. Bioorg Med Chem Lett 2009; 19: 3233-3237