Planta Med 2016; 82(18): 1532-1539
DOI: 10.1055/s-0042-114780
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

α-Hederin Induces Apoptosis, Membrane Permeabilization and Morphologic Changes in Two Cancer Cell Lines Through a Cholesterol-Dependent Mechanism

Joseph H. Lorent
1   Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, Bruxelles, Belgium
2   Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, Bruxelles, Belgium
,
Catherine Léonard
1   Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, Bruxelles, Belgium
,
Marthe Abouzi
1   Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, Bruxelles, Belgium
,
Farida Akabi
1   Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, Bruxelles, Belgium
,
Joëlle Quetin-Leclercq
2   Université catholique de Louvain, Louvain Drug Research Institute, Pharmacognosy, Bruxelles, Belgium
,
Marie-Paule Mingeot-Leclercq
1   Université catholique de Louvain, Louvain Drug Research Institute, Cellular and Molecular Pharmacology, Bruxelles, Belgium
› Author Affiliations
Further Information

Publication History

received 18 March 2016
revised 21 July 2016

accepted 04 August 2016

Publication Date:
30 August 2016 (online)

Abstract

In perspective of reducing the mortality of cancer, there is a high interest in compounds which act on multiple cellular targets and therefore prevent the appearance of cancer resistances. Saponins and α-hederin, an oleanane-type saponin, induce cancer cell death through different pathways, including apoptosis and membrane permeabilization. Unfortunately, the mechanism by which cell death is induced is unknown. We hypothesized that the activity of α-hederin mainly depends on its interaction with membrane cholesterol and therefore investigated the cholesterol and saponin-structure dependency of apoptosis and membrane permeabilization in two malignant monocytic cell lines. Apoptotic cell death and membrane permeabilization were significantly reduced in cholesterol-depleted cells. Permeabilization further depended upon the osidic side chain of α-hederin and led to extracellular calcium influx and nuclear fragmentation, with only the latter being susceptible to caspase inhibitors. Membrane order, measured by laurdan generalized polarization imaging, was neither reduced by α-hederin nor its aglycone hederagenin suggesting that their activity was not related to membrane cholesterol extraction. However, a radical change in morphology, including the disappearance of pseudopodes was observed upon incubation with α-hederin. Our results suggest that the different activities of α-hederin mainly depend on its interaction with membrane cholesterol and consequent pore formation.

Supporting Information

 
  • References

  • 1 Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13: 714-726
  • 2 Lee SJ, Sung JH, Lee SJ, Moon CK, Lee BH. Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett 1999; 144: 39-43
  • 3 Jiang H, Zhao P, Feng J, Su D, Ma S. Effect of Paris saponin I on radiosensitivity in a gefitinib-resistant lung adenocarcinoma cell line. Oncol Lett 2014; 7: 2059-2064
  • 4 Huang C, Xu D, Xia Q, Wang P, Rong C, Su Y. Reversal of p-glycoprotein-mediated multidrug resistance of human hepatic cancer cells by astragaloside II. J Pharm Pharmacol 2012; 64: 1741-1750
  • 5 Park HJ, Kwon SH, Lee JH, Lee KH, Miyamoto K, Lee KT. Kalopanaxsaponin A is a basic saponin structure for the anti-tumor activity of hederagenin monodesmosides. Planta Med 2001; 67: 118-121
  • 6 Choi JH, Lee HW, Park HJ, Kim SH, Lee KT. Kalopanaxsaponin A induces apoptosis in human leukemia U937 cells through extracellular Ca2+ influx and caspase-8 dependent pathways. Food Chem Toxicol 2008; 46: 3486-3492
  • 7 Swamy SM, Huat BT. Intracellular glutathione depletion and reactive oxygen species generation are important in alpha-hederin-induced apoptosis of P388 cells. Mol Cell Biochem 2003; 245: 127-139
  • 8 Lorent J, Le Duff CS, Quetin-Leclercq J, Mingeot-Leclercq MP. Induction of highly curved structures in relation to membrane permeabilization and budding by the triterpenoid saponins, alpha- and delta-hederin. J Biol Chem 2013; 288: 14000-14017
  • 9 Shany S, Bernheimer AW, Grushoff PS, Kim KS. Evidence for membrane cholesterol as the common binding site for cereolysin, streptolysin O and saponin. Mol Cell Biochem 1974; 3: 179-186
  • 10 Gelsomino G, Corsetto PA, Campia I, Montorfano G, Kopecka J, Castella B, Gazzano E, Ghigo D, Rizzo AM, Riganti C. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition. Mol Cancer 2013; 12: 137
  • 11 Jiang YS, Jin ZX, Umehara H, Ota T. Cholesterol-dependent induction of dendrite formation by ginsenoside Rh2 in cultured melanoma cells. Int J Mol Med 2010; 26: 787-793
  • 12 Ishida H, Hirota Y, Nakazawa H. Effect of sub-skinning concentrations of saponin on intracellular Ca2+ and plasma membrane fluidity in cultured cardiac cells. Biochim Biophys Acta 1993; 1145: 58-62
  • 13 Kwon HY, Kim EH, Kim SW, Kim SN, Park JD, Rhee DK. Selective toxicity of ginsenoside Rg3 on multidrug resistant cells by membrane fluidity modulation. Arch Pharm Res 2008; 31: 171-177
  • 14 Billheimer JT, Chamoun D, Esfahani M. Defective 3-ketosteroid reductase activity in a human monocyte-like cell line. J Lipid Res 1987; 28: 704-709
  • 15 Kritharides L, Christian A, Stoudt G, Morel D, Rothblat GH. Cholesterol metabolism and efflux in human THP-1 macrophages. Arterioscler Thromb Vasc Biol 1998; 18: 1589-1599
  • 16 De Pace DM, Esfahani M. The effects of cholesterol depletion on cellular morphology. Anat Rec 1987; 219: 135-143
  • 17 Wang Y, Chen Z, Liao Y, Mei C, Peng H, Wang M, Guo H, Lu H. Angiotensin II increases the cholesterol content of foam cells via down-regulating the expression of ATP-binding cassette transporter A1. Biochem Biophys Res Commun 2007; 353: 650-654
  • 18 Martelli AM, Zweyer M, Ochs RL, Tazzari PL, Tabellini G, Narducci P, Bortul R. Nuclear apoptotic changes: an overview. J Cell Biochem 2001; 82: 634-646
  • 19 Lorent J, Lins L, Domenech O, Quetin-Leclercq J, Brasseur R, Mingeot-Leclercq MP. Domain formation and permeabilization induced by the saponin alpha-hederin and its aglycone hederagenin in a cholesterol-containing bilayer. Langmuir 2014; 30: 4556-4569
  • 20 King MA, Radicchi-Mastroianni MA. Effects of caspase inhibition on camptothecin-induced apoptosis of HL-60 cells. Cytometry 2002; 49: 28-35
  • 21 Parasassi T, Gratton E, Yu WM, Wilson P, Levi M. Two-photon fluorescence microscopy of laurdan generalized polarization domains in model and natural membranes. Biophys J 1997; 72: 2413-2429
  • 22 Sanchez SA, Gunther G, Tricerri MA, Gratton E. Methyl-beta-cyclodextrins preferentially remove cholesterol from the liquid disordered phase in giant unilamellar vesicles. J Membr Biol 2011; 241: 1-10
  • 23 Gauthier C, Legault J, Girard-Lalancette K, Mshvildadze V, Pichette A. Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 2009; 17: 2002-2008
  • 24 Bangham AD, Horne RW, Glauert AM, Dingle JT, Lucy JA. Action of saponin on biological cell membranes. Nature 1962; 196: 952-955
  • 25 Kay JG, Murray RZ, Pagan JK, Stow JL. Cytokine secretion via cholesterol-rich lipid raft-associated SNAREs at the phagocytic cup. J Biol Chem 2006; 281: 11949-11954
  • 26 Petrovic N, Schacke W, Gahagan JR, OʼConor CA, Winnicka B, Conway RE, Mina-Osorio P, Shapiro LH. CD13/APN regulates endothelial invasion and filopodia formation. Blood 2007; 110: 142-150
  • 27 Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G. Classification of cell death: recommendations of the nomenclature committee on cell death 2009. Cell Death Differ 2009; 16: 3-11
  • 28 Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, Nieuwkoop AJ, Comellas G, Maryum N, Wang S, Uno BE, Wildeman EL, Gonen T, Rienstra CM, Burke MD. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat Chem Biol 2014; 10: 400-406
  • 29 Xu ZX, Ding T, Haridas V, Connolly F, Gutterman JU. Avicin D, a plant triterpenoid, induces cell apoptosis by recruitment of Fas and downstream signaling molecules into lipid rafts. PLoS One 2009; 4: e8532
  • 30 Yi JS, Choo HJ, Cho BR, Kim HM, Kim YN, Ham YM, Ko YG. Ginsenoside Rh2 induces ligand-independent Fas activation via lipid raft disruption. Biochem Biophys Res Commun 2009; 385: 154-159
  • 31 Garcia-Saez AJ, Buschhorn SB, Keller H, Anderluh G, Simons K, Schwille P. Oligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization. J Biol Chem 2011; 286: 37768-37777
  • 32 Montero J, Morales A, Llacuna L, Lluis JM, Terrones O, Basanez G, Antonsson B, Prieto J, Garcia-Ruiz C, Colell A, Fernandez-Checa JC. Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res 2008; 68: 5246-5256
  • 33 Li YC, Park MJ, Ye SK, Kim CW, Kim YN. Elevated levels of cholesterol-rich lipid rafts in cancer cells are correlated with apoptosis sensitivity induced by cholesterol-depleting agents. Am J Pathol 2006; 168: 1107-1118
  • 34 Chwalek M, Lalun N, Bobichon H, Ple K, Voutquenne-Nazabadioko L. Structure-activity relationships of some hederagenin diglycosides: haemolysis, cytotoxicity and apoptosis induction. Biochim Biophys Acta 2006; 1760: 1418-1427
  • 35 Juin P, Pelletier M, Oliver L, Tremblais K, Gregoire M, Meflah K, Vallette FM. Induction of a caspase-3-like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system. J Biol Chem 1998; 273: 17559-17564
  • 36 Gamble W, Vaughan M, Kruth HS, Avigan J. Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells. J Lipid Res 1978; 19: 1068-1070
  • 37 Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem 1959; 234: 466-468
  • 38 Tennant JR. Evaluation of the trypan blue technique for determintion of cell viability. Transplantation 1964; 2: 685-694
  • 39 Servais H, Van Der Smissen P, Thirion G, Van der Essen G, Van Bambeke F, Tulkens PM, Mingeot-Leclercq MP. Gentamicin-induced apoptosis in LLC-PK1 cells: involvement of lysosomes and mitochondria. Toxicol Appl Pharmacol 2005; 206: 321-333
  • 40 Hathaway WE, Newby LA, Githens JH. The acridine orange viability test applied to bone marrow cells. I. Correlation with trypan blue exclusion and eosin dye exclusion and tissue culture transformation. Blood 1964; 23: 517-525
  • 41 Owen DM, Rentero C, Magenau A, Abu-Siniyeh A, Gaus K. Quantitative imaging of membrane lipid order in cells and organisms. Nat Protoc 2012; 7: 24-35