Endosc Int Open 2016; 04(10): E1030-E1044
DOI: 10.1055/s-0042-114774
Original article
© Georg Thieme Verlag KG Stuttgart · New York

Colorectal endoscopic submucosal dissection: a systematic review and meta-analysis

Emmanuel Akintoye
1   Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States
,
Nitin Kumar
2   Developmental Endoscopy Lab, Brigham and Women’s Hospital, Boston, Massachusetts, United States
,
Hiroyuki Aihara
3   Division of Gastroenterology, Brigham and Women’s Hospital, Boston, Massachusetts, United States
,
Hala Nas
1   Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan, United States
,
Christopher C. Thompson
3   Division of Gastroenterology, Brigham and Women’s Hospital, Boston, Massachusetts, United States
› Author Affiliations
Further Information

Publication History

submitted30 March 2016

accepted after revision29 July 2016

Publication Date:
30 September 2016 (online)

Background and study aims: Endoscopic submucosal dissection (ESD) is an advanced endoscopic technique that allows en-bloc resection of gastrointestinal tumor. We systematically review the medical literature in order to evaluate the safety and efficacy of colorectal ESD.

Patients and methods: We performed a comprehensive literature search of MEDLINE, EMBASE, Ovid, CINAHL, and Cochrane for studies reporting on the clinical efficacy and safety profile of colorectal ESD.

Results: Included in this study were 13833 tumors in 13603 patients (42 % female) who underwent colorectal ESD between 1998 and 2014. The R0 resection rate was 83 % (95 % CI, 80 – 86 %) with significant between-study heterogeneity (P < 0.001) which was partly explained by difference in continent (P = 0.004), study design (P = 0.04), duration of the procedure (P = 0.009), and, marginally, by average tumor size (P = 0.09). Endoscopic en bloc and curative resection rates were 92 % (95 % CI, 90 – 94 %) and 86 % (95 % CI, 80 – 90 %), respectively. The rates of immediate and delayed perforation were 4.2 % (95 % CI, 3.5 – 5.0 %) and 0.22 % (95 % CI, 0.11 – 0.46 %), respectively, while rates of immediate and delayed major bleeding were 0.75 % (95 % CI, 0.31 – 1.8 %) and 2.1 % (95 % CI, 1.6 – 2.6 %). After an average postoperative follow up of 19 months, the rate of tumor recurrence was 0.04 % (95 % CI, 0.01 – 0.31) among those with R0 resection and 3.6 % (95 % CI, 1.4 – 8.8 %) among those without R0 resection. Overall, irrespective of the resection status, recurrence rate was 1.0 % (95 % CI, 0.42 – 2.1 %).

Conclusions: Our meta-analysis, the largest and most comprehensive assessment of colorectal ESD to date, showed that colorectal ESD is safe and effective for colorectal tumors and warrants consideration as first-line therapy when an expert operator is available.

 
  • References

  • 1 Ferreira J, Akerman P. Colorectal Endoscopic Submucosal Dissection: Past, Present, and Factors Impacting Future Dissemination. Clinics in colon and rectal surgery 2015; 28: 146-151
  • 2 ASGE Technology Committee . Maple JT, Abu Dayyeh BK et al. Endoscopic submucosal dissection. Gastrointest Endosc 2015; 81: 1311-1325
  • 3 Uraoka T, Parra-Blanco A, Yahagi N. Colorectal endoscopic submucosal dissection: is it suitable in western countries?. J Gastroenterol Hepatol 2013; 28: 406-414
  • 4 Wang J, Zhang XH, Ge J et al. Endoscopic submucosal dissection vs endoscopic mucosal resection for colorectal tumors: A meta-analysis. World Journal of Gastroenterology 2014; 20: 8282-8287
  • 5 Stroup DF, Berlin JA, Morton SC et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000; 283: 2008-2012
  • 6 Hunter JP, Saratzis A, Sutton AJ et al. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J Clin Epidem 2014; 67: 897-903
  • 7 Leimu R, Koricheva J. Cumulative meta-analysis: a new tool for detection of temporal trends and publication bias in ecology. Proceedings Biological sciences / The Royal Society 2004; 271: 1961-1966
  • 8 Saito Y, Fukuzawa M, Matsuda T et al. Clinical outcome of endoscopic submucosal dissection versus endoscopic mucosal resection of large colorectal tumors as determined by curative resection. Surg Endosc 2010; 24: 343-352
  • 9 Yamashina T, Takeuchi Y, Uedo N et al. Features of electrocoagulation syndrome after endoscopic submucosal dissection for colorectal neoplasm. J Gastroenterol Hepatol 2016; 31: 615-620
  • 10 Cai S, Zhong Y, Zhou P et al. Re-evaluation of indications and outcomes of endoscopic excision procedures for colorectal tumors: a review. Gastroenterol Rep 2014; 2: 27-36
  • 11 Kiriyama S, Saito Y, Yamamoto S et al. Comparison of endoscopic submucosal dissection with laparoscopic-assisted colorectal surgery for early-stage colorectal cancer: a retrospective analysis. Endoscopy 2012; 44: 1024-1030
  • 12 Tanimoto MA, Guerrero ML, Morita Y et al. Impact of formal training in endoscopic submucosal dissection for early gastrointestinal cancer: A systematic review and a meta-analysis. World J Gastrointest Endosc 2015; 7: 417-428
  • 13 Puli SR, Kakugawa Y, Saito Y et al. Successful complete cure en-bloc resection of large nonpedunculated colonic polyps by endoscopic submucosal dissection: a meta-analysis and systematic review. Annals Surgical Oncol 2009; 16: 2147-2151
  • 14 Hassan C, Repici A, Sharma P et al. Efficacy and safety of endoscopic resection of large colorectal polyps: a systematic review and meta-analysis. Gut 2016; 65: 806-820
  • 15 Kawaguti FS et al. Endoscopic submucosal dissection versus transanal endoscopic microsurgery for the treatment of early rectal cancer. Surgical Endoscopy and Other Interventional Techniques 2014; 28: 1173-1179
  • 16 Santos JO et al. Feasibility of endoscopic submucosal dissection for gastric and colorectal lesions: Initial experience from the Gastrocentro--UNICAMP. Clinics (Sao Paulo) 2013; 68: 141-146
  • 17 Wang HB et al. Endoscopic submucosal dissection for rectal carcinoid tumors: An analysis of 17 cases. World Chinese Journal of Digestology 2014; 22: 709-712
  • 18 Zhao ZF et al. A comparative study on endoscopy treatment in rectal carcinoid tumors. Surg Laparosc Endosc Percutan Tech 2012; 22: 260-263
  • 19 Hon SS et al. Endoscopic submucosal dissection versus local excision for early rectal neoplasms: a comparative study. Surg Endosc 2011; 25: 3923-3927
  • 20 Rahmi G et al. Endoscopic submucosal dissection for superficial rectal tumors: Prospective evaluation in France. Endoscopy 2014; 46: 670-676
  • 21 Farhat S et al. Endoscopic submucosal dissection in a European setting. A multi-institutional report of a technique in development. Endoscopy 2011; 43: 664-670
  • 22 Probst A et al. Endoscopic submucosal dissection in large sessile lesions of the rectosigmoid: Learning curve in a European center. Endoscopy 2012; 44: 660-667
  • 23 Repici A et al. High efficacy of endoscopic submucosal dissection for rectal laterally spreading tumors larger than 3 cm. Gastrointestinal Endoscopy 2013; 77: 96-101
  • 24 Fusaroli P et al. Usefulness of a second endoscopic arm to improve therapeutic endoscopy in the lower gastrointestinal tract. Preliminary experience – a case series. Endoscopy 2009; 41: 997-1000
  • 25 Trecca A et al. Experience with a new device for pathological assessment of colonic endoscopic submucosal dissection. Tech Coloproctol 2014;
  • 26 Niimi K et al. Long-term outcomes of endoscopic submucosal dissection for colorectal epithelial neoplasms. Endoscopy 2010; 42: 723-729
  • 27 Nishiyama H et al. Endoscopic submucosal dissection for colorectal epithelial neoplasms. Dis Colon Rectum 2010; 53: 161-168
  • 28 Tamegai Y et al. Endoscopic submucosal dissection: a safe technique for colorectal tumors. Endoscopy 2007; 39: 418-422
  • 29 Hotta K et al. Criteria for non-surgical treatment of perforation during colorectal endoscopic submucosal dissection. Digestion 2012; 85: 116-120
  • 30 Ishii N et al. Endoscopic submucosal dissection with a combination of small-caliber-tip transparent hood and flex knife for large superficial colorectal neoplasias including ileocecal lesions. Surg Endosc 2010; 24: 1941-1947
  • 31 Imaeda H et al. Novel technique of endoscopic submucosal dissection by using external forceps for early rectal cancer (with videos). Gastrointest Endosc 2012; 75: 1253-1257
  • 32 Tanaka S et al. Endoscopic submucosal dissection for colorectal neoplasia: possibility of standardization. Gastrointestinal Endoscopy 2007; 66: 100-107
  • 33 Onozato Y et al. Endoscopic submucosal dissection for rectal tumors. Endoscopy 2007; 39: 423-427
  • 34 Sohara N et al. Can endoscopic submucosal dissection be safely performed in a smaller specialized clinic?. World J Gastroenterol 2013; 19: 528-535
  • 35 Hori K et al. Predictive factors for technically difficult endoscopic submucosal dissection in the colorectum. Endoscopy 2014; 46: 862-870
  • 36 Ohya T et al. Balloon overtube-guided colorectal endoscopic submucosal dissection. World J Gastroenterol 2009; 15: 6086-6090
  • 37 Fujihara S et al. The efficacy and safety of prophylactic closure for a large mucosal defect after colorectal endoscopic submucosal dissection. Oncol Rep 2013; 30: 85-90
  • 38 Okamoto K et al. Mucosectom2-short blade for safe and efficient endoscopic submucosal dissection of colorectal tumors. Endoscopy 2013; 45: 928-930
  • 39 Akahoshi K et al. Endoscopic submucosal dissection of early colorectal tumors using a grasping-type scissors forceps: a preliminary clinical study. Endoscopy 2010; 42: 419-422
  • 40 Shono T et al. Feasibility of endoscopic submucosal dissection: a new technique for en bloc resection of a large superficial tumor in the colon and rectum. Int J Surg Oncol 2011; 2011: 948293
  • 41 Izumi K et al. Frequent occurrence of fever in patients who have undergone endoscopic submucosal dissection for colorectal tumor, but bacteremia is not a significant cause. Surg Endosc 2014; 28: 2899-2904
  • 42 Motohashi O. Two-point fixed endoscopic submucosal dissection in rectal tumor (with video). Gastrointest Endosc 2011; 74: 1132-1136
  • 43 Mizushima T et al. Technical difficulty according to location, and risk factors for perforation, in endoscopic submucosal dissection of colorectal tumors. Surg Endosc 2015; 29: 133-139
  • 44 Takeuchi Y et al. Factors associated with technical difficulties and adverse events of colorectal endoscopic submucosal dissection: retrospective exploratory factor analysis of a multicenter prospective cohort. Int J Colorectal Dis 2014; 29: 1275-1284
  • 45 Kita H et al. Endoscopic submucosal dissection using sodium hyaluronate, a new technique for en bloc resection of a large superficial tumor in the colon. Inflammopharmacology 2007; 15: 129-131
  • 46 Homma K et al. Efficacy of novel SB knife Jr examined in a multicenter study on colorectal endoscopic submucosal dissection. Dig Endosc 2012; 24 (Suppl. 01) 117-20
  • 47 Sato K et al. Factors affecting the technical difficulty and clinical outcome of endoscopic submucosal dissection for colorectal tumors. Surg Endosc 2014; 28: 2959-2965
  • 48 Shiga H et al. Endoscopic submucosal dissection for colorectal neoplasia during the clinical learning curve. Surg Endosc 2014; 28: 2120-2128
  • 49 Sakamoto T et al. Endoscopic submucosal dissection for colorectal neoplasms. Ann Transl Med 2014; 2: 26
  • 50 Nagai K et al. Techniques for safer colonic endoscopic submucosal dissections. Gastroenterological Endoscopy 2012; 54: 1138
  • 51 Ohata K et al. Endoscopic submucosal dissection for large colorectal tumor in a Japanese general hospital. J Oncol 2013; 2013: 218670
  • 52 Nawata Y, Homma K, Suzuki Y. Retrospective study of technical aspects and complications of endoscopic submucosal dissection for large superficial colorectal tumors. Digestive Endoscopy 2014; 26: 552-555
  • 53 Yoshida M et al. Carbon dioxide insufflation during colorectal endoscopic submucosal dissection for patients with obstructive ventilatory disturbance. Int J Colorectal Dis 2014; 29: 365-371
  • 54 Toyonaga T et al. Endoscopic treatment for early stage colorectal tumors: the comparison between EMR with small incision, simplified ESD, and ESD using the standard flush knife and the ball tipped flush knife. Acta Chir Iugosl 2010; 57: 41-46
  • 55 Kim KM et al. Treatment outcomes according to endoscopic treatment modalities for rectal carcinoid tumors. Clin Res Hepatol Gastroenterol 2013; 37: 275-282
  • 56 Lee DS et al. The feasibility of endoscopic submucosal dissection for rectal carcinoid tumors: comparison with endoscopic mucosal resection. Endoscopy 2010; 42: 647-651
  • 57 Park SU et al. Endoscopic submucosal dissection or transanal endoscopic microsurgery for nonpolypoid rectal high grade dysplasia and submucosa-invading rectal cancer. Endoscopy 2012; 44: 1031-1036
  • 58 Lee WH et al. Efficacy of endoscopic mucosal resection using a dual-channel endoscope compared with endoscopic submucosal dissection in the treatment of rectal neuroendocrine tumors. Surg Endosc 2013; 27: 4313-4318
  • 59 Kim YJ et al. Comparison of clinical outcomes among different endoscopic resection methods for treating colorectal neoplasia. Dig Dis Sci 2013; 58: 1727-1736
  • 60 Lee EJ et al. Endoscopic submucosal dissection for colorectal tumors – 1,000 colorectal ESD cases: one specialized institute's experiences. Surg Endosc 2013; 27: 31-39
  • 61 Sohn DK et al. Selection of cap size in endoscopic submucosal resection with cap aspiration for rectal carcinoid tumors. J Laparoendosc Adv Surg Tech A 2008; 18: 815-818
  • 62 Moon SH et al. Endoscopic submucosal dissection for rectal neuroendocrine (carcinoid) tumors. J Laparoendosc Adv Surg Tech A 2011; 21: 695-699
  • 63 Jung D et al. Risk of electrocoagulation syndrome after endoscopic submucosal dissection in the colon and rectum. Endoscopy 2013; 45: 714-717
  • 64 Choi CW et al. Comparison of endoscopic resection therapies for rectal carcinoid tumor: endoscopic submucosal dissection versus endoscopic mucosal resection using band ligation. J Clin Gastroenterol 2013; 47: 432-436
  • 65 Byeon JS et al. Endoscopic submucosal dissection with or without snaring for colorectal neoplasms. Gastrointest Endosc 2011; 74: 1075-1083
  • 66 Spychalski M, Dziki A. Safe and efficient colorectal ESD in European settings – is the successful implementation of the procedure possible?. Dig Endosc 2015; 27: 368-373
  • 67 Thorlacius H, Uedo N, Toth E. Implementation of endoscopic submucosal dissection for early colorectal neoplasms in Sweden. Gastroenterol Res Pract 2013; 2013: 758202
  • 68 Hsu WH et al. Clinical practice of endoscopic submucosal dissection for early colorectal neoplasms by a colonoscopist with limited gastric experience. Gastroenterol Res Pract 2013; 2013: 262171
  • 69 Tseng MY et al. Endoscopic submucosal dissection for early colorectal neoplasms: Clinical experience in a tertiary medical center in Taiwan. Gastroenterol Res Pract 2013; 2013: 891565
  • 70 Hurlstone DP et al. Achieving R0 resection in the colorectum using endoscopic submucosal dissection. Br J Surg 2007; 94: 1536-1542
  • 71 Lang GD et al. A Single-Center Experience of Endoscopic Submucosal Dissection Performed in a Western Setting. Dig Dis Sci 2015; 60: 531-536
  • 72 Kantsevoy SV et al. Endoscopic suturing closure of large mucosal defects after endoscopic submucosal dissection is technically feasible, fast, and eliminates the need for hospitalization (with videos). Gastrointestinal Endoscopy 2014; 79: 503-507
  • 73 Bassan MS et al. Comparison of the technical outcomes and financial impact of endoscopic submucosal dissection and endoscopic mucosal resection for large colonic lesions at two expert centres: A prospective cohort study. Gastrointestinal Endoscopy 2012; 75: AB345-AB346
  • 74 Zhong Y et al. Endoscopic submucosal dissection for colorectal submucosal tumors: A large study of 255 cases. Gastrointestinal Endoscopy 2013; 77: AB545
  • 75 Hon SSF, Chiu PWY, Ng SSM. Colorectal endoscopic submucosal dissection (ESD) after two different training pathways: A comparison of early outcomes. Colorectal Disease 2012; 14: 49
  • 76 Emura F et al. Therapeutic outcomes of esd for superficial colorectal tumors in a western training center. Gastrointestinal Endoscopy 2014; 79: AB430
  • 77 Kruse E et al. 83 widespread endoscopic submucosal dissections (ESDs) in 81 patients with large laterally spreading tumors up to 19 cm in the recto-sigmoid: Experience from a European center. Endoscopy 2012; 44: 441
  • 78 Sauer M et al. Endoscopic submucosal dissection (ESD) of large sessile and flat neoplastic lesions in the colon: A single-center series with 83 procedures from Europe. Gastrointestinal Endoscopy 2014; 79: AB429
  • 79 Iacopini F et al. Definition of easy and difficult colorectal endoscopic submucosal dissection (ESD) in the western setting. Digestive and Liver Disease 2014; 46: S44-S45
  • 80 Trentino P. Feasibility and efficacy of Endoscopic Submucosal Dissection; A single center preliminary experience on 25 unselected cases of early or recurrent gastrointestinal cancers. Digestive and Liver Disease 2010; 42: S168-S169
  • 81 De Lisi S et al. Endoscopic Submucosal Dissection(ESD) for residual or recurrent colorectal adenomas: A single center experience. Gastrointestinal Endoscopy 2012; 75: AB406
  • 82 Petruzziello L et al. Colorectal endoscopic submucosal dissection (CR-ESD) of residual/recurrent superficial neoplastic lesions after endoscopic or surgical resection. Retrospective analysis and outcomes. Digestive and Liver Disease 2014; 46: S45
  • 83 Andrisani G et al. Colorectal endoscopic submucosal dissection: Residual/recurrent lesions versus primary lesions. Digestive and Liver Disease 2014; 46: S19
  • 84 Kaneko H et al. Treatment outcomes of endoscopic resection for rectal carcinoid tumors: An analysis of resectability and long-term result of 37 consecutive cases. Gastrointestinal Endoscopy 2013; 77: AB538
  • 85 Kudo K et al. Endoscopic mucosal resection and endoscopic submucosal dissection for colorectal laterally spreading tumors. Journal of Gastroenterology and Hepatology 2013; 28: 8
  • 86 Mizuno K et al. Long-term outcomes of endoscopic submucosal dissection for colorectal neoplasms. Gastrointestinal Endoscopy 2013; 77: AB549
  • 87 Osuga T et al. Endoscopic submucosal resection with endoscopic hemorrhoidal ligation device can provide technically simple, successful and safe treatment for rectal carcinoid tumors. Journal of Gastroenterology and Hepatology 2012; 27: 298
  • 88 Kashida H et al. Endoscopic submucosal dissection for the colorectum: Usefulness and feasibility. Journal of Gastroenterology and Hepatology 2012; 27: 202
  • 89 Kawazoe A, Ikehara H. Efficacy of endoscopic submucosal dissection for large colorectal tumors. Journal of Gastroenterology and Hepatology 2011; 26: 64
  • 90 Nemoto D et al. Education for colonic endoscopic submucosal dissection (ESD): Is gastric ESD a prerequisite for the novice?. Gastrointestinal Endoscopy 2014; 79: AB430-AB431
  • 91 Hayashi N et al. Predictors of incomplete resection and perforation associated with endoscopic submucosal dissection for colorectal tumors. Gastrointestinal Endoscopy 2013; 77: AB544
  • 92 Inada Y et al. Prediction of complicated cases of colorectal tumors and the skills required for endoscopic submucosal dissection in these cases. Gastrointestinal Endoscopy 2013; 77: AB541
  • 93 Mitani T et al. Clinical outcomes of endoscopic submucosal dissection for 748 colorectal epithelial neoplasms. Gastrointestinal Endoscopy 2013; 77: AB538
  • 94 Shiga H et al. Endoscopic submucosal dissection for colorectal neoplasia during the initial introduction period. Annals of Oncology 2010; 21: vi69
  • 95 Nio K et al. Complications and risk factors of colorectal endoscopic submucosal dissection (ESD). Gastroenterology 2013; 144: S220
  • 96 Sasajima K, Chinzei R, Oshima T. Endoscopic submucosal dissection for early colorectal neoplasm: Detailed analysis and strategy against fibrosis. Gastrointestinal Endoscopy 2012; 75: AB417-AB418
  • 97 Tanaka K et al. Comparison of the efficacy and adverse events of endoscopic mucosal resection and submucosal dissection for the treatment of colon neoplasms – based on the results of our institute experience and a meta-analysis of comparative studies. Gastrointestinal Endoscopy 2014; 79: AB472
  • 98 Yamamoto K et al. Endoscopic submucosal dissection for large superficial colorectal neoplasms using endoclips to assist in mucosal flap formation (novel technique: Clip flap method). Gastrointestinal Endoscopy 2013; 77: AB198-AB199
  • 99 Oyama T, Kitamura Y, Hotta K. Complications resulting from endoscopic submucosal dissection for digestive tract cancers – Comparison between esophagus, stomach, duodenum and colon ESD. Gastrointestinal Endoscopy 2010; 71: AB148
  • 100 Horikawa Y et al. Technical difficulty extremely differs from tumor location in colorectal endoscopic submucosal dissection: Classification by endoscopic controllability. Journal of Gastroenterology and Hepatology 2012; 27: 104
  • 101 Kojima Y et al. Risk factors for procedure-related intestinal perforation in endoscopic submucosal dissection for colonic tumors. Journal of Gastroenterology and Hepatology 2013; 28: 498
  • 102 Fukuzawa M et al. The indication of colorectal ESD – Which size of lesion permit for colorectal ESD?. Journal of Gastroenterology and Hepatology 2012; 27: 130
  • 103 Yamada S et al. Endoscopic diagnosis of invasion depth for early protruded-type colorectal cancer and the clinical outcomes of endoscopic submucosal dissection. Gastrointestinal Endoscopy 2013; 77: AB552-AB553
  • 104 Kobayashi N et al. The influence of biopsy before treatment on the outcome of colorectal endoscopic submucosal dissection. Gastrointestinal Endoscopy 2012; 75: AB408
  • 105 Hayashi Y et al. Colorectal ESD for large tumors (>5 cm in diameter) is as safe and reliable as for smaller tumors (2 – 5 cm in diameter). Journal of Gastroenterology and Hepatology 2013; 28: 557
  • 106 Lee Y et al. Short and long term results of endoscopic submucosal dissection for early colorectal cancer: Diagnostic and therapeutic role. Gastrointestinal Endoscopy 2011; 73: AB219
  • 107 Ko BM et al. Evaluation of complication rate and safety of endoscopic submucosal dissection (ESD) in colorectal neoplasms. Gastrointestinal Endoscopy 2009; 69: AB382
  • 108 Park DS, Baek IH. Usefulness and short term clinical outcomes of colorectal ESD. Journal of Gastroenterology and Hepatology 2012; 27: 177-178
  • 109 Kim HK et al. The usefulness of endoscopic submucosal dissection technique in resection of large pedunculated colon polyps. Journal of Gastroenterology and Hepatology 2010; 25: A41
  • 110 Rhee KH et al. Feasibility and safety of endoscopics dissection for colorectal neoplasia. Journal of Gastroenterology and Hepatology 2010; 25: A48-A49
  • 111 Joo M et al. Ten cases of endoscopic submucosal dissection for large rectosigmoid tumors. Internal Medicine Journal 2010; 40: 109
  • 112 Bialek A et al. Endoscopic submucosal dissection of colorectal tumors-the European centre experience. Journal of Gastroenterology and Hepatology 2012; 27: 183
  • 113 Hulagu S et al. ESD for laterally spreading tumors in colon: Experience for a tertiary unit. Gastroenterology 2011; 140: S684
  • 114 Tholoor S et al. Feasibility, safety and outcomes of an endoscopic submucosal dissection service in a UK setting. Gut 2012; 61: A379
  • 115 George R et al. Endoscopic submucosal dissection (ESD)/hybrid ESD for large colorectal polyps: UK district hospital. Journal of Gastroenterology and Hepatology 2013; 28: 27
  • 116 Gorgun IE, Remzi FH. Endoscopic submucosal dissection for large nonpedunculated lesions of the colon: Early experience in the united states. Surgical Endoscopy and Other Interventional Techniques 2013; 27: S478
  • 117 Omer E, Kantsevoy S. Clinical outcomes of endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) for large flat colorectal polyps. American Journal of Gastroenterology 2012; 107: S208-S209
  • 118 Antillon MR et al. Effectiveness of endoscopic submucosal dissection as an alternative to traditional surgery for large lateral spreading polyps and early malignancies of the colon and rectum in the United States. Gastrointestinal Endoscopy 2009; 69: AB279