Planta Medica International Open 2016; 3(03): e55-e59
DOI: 10.1055/s-0042-112226
Letter
Georg Thieme Verlag KG Stuttgart · New York

Naturally Occurring Anti-TB Agents: Isolation, Chemical Transformations and In Vitro Antitubercular Activities of Secondary Metabolites of Rhizomes of Alpinia galanga

Tushar R. Valkute
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, India
,
Manisha Arkile
2   Combi-Chem Bioresource Centre, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, India
,
Dhiman Sarkar
2   Combi-Chem Bioresource Centre, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, India
,
Asish K. Bhattacharya
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Pune, India
› Author Affiliations
Further Information

Publication History

received 27 April 2016
revised 17 June 2016

accepted 04 July 2016

Publication Date:
15 September 2016 (online)

Abstract

A bioactivity-guided chemical examination of the acetone extract of the rhizomes of Alpinia galanga led to the isolation of six secondary metabolites, eucalyptol derivative (1) and phenylpropanoids (26). The structures of all of the isolated compounds (1–6) were elucidated on the basis of their spectral data. The isolated compounds (1–6) were in vitro assayed against active and dormant phenotypes of Mycobacterium tuberculosis H37Ra, respectively. Interestingly, 1′S-1′-acetoxychavicol acetate (2) showed good antitubercular activities against both active and dormant phenotypes of M. tuberculosis with IC50 values of 1.04 µM and 2.69 µM, respectively. Tsuji-Trost and homodimerization reactions of the active compound (2) respectively resulted in the formation of two analogues, 7 and 8. Both of these synthesized analogues were also found to be active in vitro against active [IC50 s of 3.24 and 3.87 µM, respectively, for compounds 7 and 8] and dormant [IC50 s of 8.33 and 2.41 µM, respectively, for compounds 7 and 8] phenotypes of M. tuberculosis H37Ra, respectively.

Supporting Information

 
  • References

  • 1 World Health Organization. Global tuberculosis report: WHO report 2014. Geneva, Switzerland: WHO Press; 2014
  • 2 Sankar MM, Singh J, Diana SCA, Singh S. Molecular characterization of Mycobacterium tuberculosis isolates from North Indian patients with extrapulmonary tuberculosis. Tuberculosis 2013; 93: 75-83
  • 3 Young DB, Perkins MD, Duncan K, Barry CE. Confronting the scientific obstacles to global control of tuberculosis. J Clin Invest 2008; 118: 1255-1265
  • 4 Lienhardt C, Vernon A, Raviglione MC. New drugs and new regimens for the treatment of tuberculosis: review of the drug development pipeline and implications for national programmes. Curr Opin Pulm Med 2010; 16: 186-193
  • 5 Shaikh MH, Subhedar DD, Nawale L, Sarkar D, Khan FA, Sangshetti JN, Shingate BB. 1,2,3-Triazole derivatives as antitubercular agents: synthesis, biological evaluation and molecular docking study. Medchemcomm 2015; 6: 1104-1116
  • 6 Singh MM. XDR-TB–danger ahead. Indian J Tuberc 2007; 54: 1-2
  • 7 Rao K, Chodisetti B, Gandi S, Mangamoori LN, Giri A. Direct and indirect organogenesis of Alpinia galanga and the phytochemical analysis. Appl Biochem Biotechnol 2011; 165: 1366-1378
  • 8 Gupta P, Bhatter P, Dʼsouza D, Tolani M, Daswani P, Tetali P, Birdi T. Evaluating the anti Mycobacterium tuberculosis activity of Alpinia galanga (L.) Willd. axenically under reducing oxygen conditions and in intracellular assays. BMC Complement Altern Med 2014; 14: 84
  • 9 Warrier PK, Nambiar VPK. Indian medicinal plants: a compendium of 500 species, Vol. 1. New Delhi: Orient Longman Pvt Ltd.; 1994: 104
  • 10 Samarghandian S, Hadjzadeh M, Afshari JT, Hosseini M. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line. BMC Complement Altern Med 2014; 14: 192
  • 11 Köse LP, Gülçin İ, Gören AC, Namiesnik J, Martinez-Ayala AL, Gorinstein S. LC–MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind Crops Prod 2015; 74: 712-721
  • 12 Khattak S, Shah HU, Ahmad W, Ahmad M. Biological effects of indigenous medicinal plants Curcuma longa and Alpinia galanga . Fitoterapia 2005; 76: 254-257
  • 13 Bendjeddou D, Lalaoui K, Satta D. Immunostimulating activity of the hot water-soluble polysaccharide extracts of Anacyclus pyrethrum, Alpinia galanga and Citrullus colocynthis . J Ethnopharmacol 2003; 88: 155-160
  • 14 Akhtar MS, Khan MA, Malik MT. Hypoglycaemic activity of Alpinia galanga rhizome and its extracts in rabbits. Fitoterapia 2002; 73: 623-628
  • 15 Chan EW, Ng VP, Tan VV, Low YY. Antioxidant and antibacterial properties of Alpinia galanga, Curcuma longa, and Etlingera elatior (Zingiberaceae). Pharmacog J 2011; 3: 54-61
  • 16 Trakranrungsie N, Chatchawanchonteera A, Khunkitti W. Ethnoveterinary study for antidermatophytic activity of Piper betle, Alpinia galanga and Allium ascalonicum extracts in vitro . Res Vet Sci 2008; 84: 80-84
  • 17 Oonmetta-Aree J, Suzuki T, Gasaluck P, Eumkeb G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus . LWT Food Sci Technol 2006; 39: 1214-1220
  • 18 Ling ZH, Lv-Yi CH, Liang JY. Two new phenylpropanoids isolated from the rhizomes of Alpinia galanga . Chinese J Nat Med 2012; 10: 370-373
  • 19 Xiao-Lu ZH, Ming-Hua YA, Jian-Guang LU, Huang XF, Ling-Yi KO. A new phenylpropanoid from Alpinia galanga . Chinese J Nat Med 2009; 7: 19-20
  • 20 Kubota K, Nakamura K, (Murayama) Kobayashi A, Amaike M. Acetoxy-1, 8-cineoles as aroma constituents of Alpinia galanga Willd. J Agric Food Chem 1998; 46: 5244-5247
  • 21 Barik BR, Kundu AB, Dey AK. Two phenolic constituents from Alpinia galanga rhizomes. Phytochemistry 1987; 26: 2126-2127
  • 22 De Pooter HL, Omar MN, Coolsaet BA, Schamp NM. The essential oil of greater galanga (Alpinia galanga) from Malaysia. Phytochemistry 1985; 24: 93-96
  • 23 Yang WQ, Gao Y, Li M, Miao DR, Wang F. New chalcones bearing a long-chain alkylphenol from the rhizomes of Alpinia galanga . J Asian Nat Prod Res 2015; 17: 783-787
  • 24 Roy SK, Pahwa S, Nandanwar H, Jachak SM. Phenylpropanoids of Alpinia galanga as efflux pump inhibitors in Mycobacterium smegmatis mc2 155. Fitoterapia 2012; 83: 1248-1255
  • 25 Singh JH, Alagarsamy V, Diwan PV, Kumar SS, Nisha JC, Reddy YN. Neuroprotective effect of Alpinia galanga (L.) fractions on Aβ (25–35) induced amnesia in mice. J Ethnopharmacol 2011; 138: 85-91
  • 26 Latha C, Shriram VD, Jahagirdar SS, Dhakephalkar PK, Rojatkar SR. Antiplasmid activity of 1′-acetoxychavicol acetate from Alpinia galanga against multi-drug resistant bacteria. J Ethnopharmacol 2009; 123: 522-525
  • 27 Phitak T, Choocheep K, Pothacharoen P, Pompimon W, Premanode B, Kongtawelert P. The effects of p-hydroxycinnamaldehyde from Alpinia galanga extracts on human chondrocytes. Phytochemistry 2009; 70: 237-243
  • 28 Yasuhara T, Manse Y, Morimoto T, Qilong W, Matsuda H, Yoshikawa M, Muraoka O. Acetoxybenzhydrols as highly active and stable analogues of 1′S-1′-acetoxychavicol, a potent antiallergic principal from Alpinia galanga . Bioorg Med Chem Lett 2009; 19: 2944-2946
  • 29 Matsuda H, Pongpiriyadacha Y, Morikawa T, Ochi M, Yoshikawa M. Gastroprotective effects of phenylpropanoids from the rhizomes of Alpinia galanga in rats: structural requirements and mode of action. Eur J Pharmacol 2003; 471: 59-67
  • 30 Tamura S, Shiomi A, Kimura T, Murakami N. Halogenated analogs of 1′-acetoxychavicol acetate, Rev-export inhibitor from Alpinia galanga, designed from mechanism of action. Bioorg Med Chem Lett 2010; 20: 2082-2085
  • 31 Tamura S, Shiomi A, Kaneko M, Ye Y, Yoshida M, Yoshikawa M, Kimura T, Kobayashi M, Murakami N. New Rev-export inhibitor from Alpinia galanga and structure-activity relationship. Bioorg Med Chem Lett 2009; 19: 2555-2557
  • 32 Hasima N, Aun LI, Azmi MN, Aziz AN, Thirthagiri E, Ibrahim H, Awang K. 1′S-1′-Acetoxyeugenol acetate: a new chemotherapeutic natural compound against MCF-7 human breast cancer cells. Phytomedicine 2010; 17: 935-939
  • 33 Matsuda H, Ando S, Morikawa T, Kataoka S, Yoshikawa M. Structure–activity relationships of 1′S-1′-acetoxychavicol acetate for inhibitory effect on NO production in lipopolysaccharide-activated mouse peritoneal macrophages. Bioorg Med Chem Lett 2005; 15: 1949-1953
  • 34 Zeng QH, Lu CL, Zhang XW, Jiang JG. Isolation and identification of ingredients inducing cancer cell death from the seeds of Alpinia galanga, a Chinese spice. Food Funct 2015; 6: 431-443
  • 35 Phanthong P, Lomarat P, Chomnawangb MT, Bunyapraphatsaraa N. Antibacterial activity of essential oils and their active components from Thai spices against foodborne pathogens. Sci Asia 2013; 39: 472-476
  • 36 Kubota K, Ueda Y, Yasuda M, Masuda A. Occurrence and antioxidative activity of 1′-acetoxychavicol acetate and its related compounds in the rhizomes of Alpinia galanga during cooking. In: Spanier AM, Shahidi F, Parliment TH, Mussinan C, Ho CT, Tratras Contis E, editors. Food flavors and chemistry: advances of the new millennium. Cambridge, UK: The Royal Society of Chemistry 2001; 274: 601-607
  • 37 Moffatt J, Hashimoto M, Kojima A, Kennedy DO, Murakami A, Koshimizu K, Ohigashi H, Matsui-Yuasa I. Apoptosis induced by 1′-acetoxychavicol acetate in Ehrlich ascites tumor cells is associated with modulation of polyamine metabolism and caspase-3 activation. Carcinogenesis 2000; 21: 2151-2157
  • 38 Itokawa H, Morita H, Sumitomo T, Totsuka N, Takeya K. Antitumour principles from Alpinia galanga . Planta Med 1987; 53: 32-33
  • 39 Kondo A, Ohigashi H, Murakami A, Suratwadee J, Koshimizu K. 1′-acetoxychavicol acetate as a potent inhibitor of tumor promoter-induced Epstein-Barr virus activation from Languas gaianga, a traditional Thai condiment. Biosci Biotechnol Biochem 1993; 57: 1344-1345
  • 40 Zheng Q, Hirose Y, Yoshimi N, Murakami A, Koshimizu K, Ohigashi H, Sakata K, Matsumoto Y, Sayama Y, Mori H. Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells. J Cancer Res Clin Oncol 2002; 128: 539-546
  • 41 Murakami A, Toyota K, Ohura S, Koshimizu K, Ohigashi H. Structure-activity relationships of (1′S)-1′-acetoxychavicol acetate, a major constituent of a southeast Asian condiment plant Languas galanga, on the inhibition of tumor-promoter-induced Epstein-Barr virus activation. J Agric Food Chem 2000; 48: 1518-1523
  • 42 Nakamura Y, Murakami A, Ohto Y, Torikai K, Tanaka T, Ohigashi H. Suppression of tumor promoter-induced oxidative stress and inflammatory responses in mouse skin by a superoxide generation inhibitor 1′-acetoxychavicol acetate. Cancer Res 1998; 58: 4832-4839
  • 43 Noro T, Sekiya T, Katoh M, Oda Y, Miyase T, Kuroyanagi M, Ueno A, Fukushima S. Inhibitors of xanthine oxidase from Alpinia galanga . Chem Pharm Bull 1988; 36: 244-248
  • 44 Janssen AM, Scheffer JJ. Acetoxychavicol acetate, an antifungal component of Alpinia galangal . Planta Med 1985; 51: 507-511
  • 45 Bhattacharya AK, Chand HR, John J, Deshpande MV. Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. pendula . Eur J Med Chem 2015; 94: 1-7
  • 46 Bhattacharya AK, Rana KC. Antimycobacterial agent, (E)-phytol and lauric amide from the plant Lagascea mollis . Ind J Chem 2013; 52?B: 901-903
  • 47 Bhattacharya AK, Pathak AK, Sharma RP. Semi-synthesis of deoxyartemisinin. Mendeleev Commun 2007; 17: 27-28
  • 48 Bhattacharya AK, Pal M, Jain DC, Joshi BS, Roy R, Rychlewska U, Sharma RP. Stereoselective reduction of arteannuin B and its chemical transformations. Tetrahedron 2003; 59: 2871-2876
  • 49 Bhattacharya AK, Jain DC, Sharma RP, Roy R, McPhail AT. Boron trifluoride-acetic anhydride catalysed rearrangement of dihydroarteannuin B. Tetrahedron 1997; 53: 14975-14990
  • 50 Sarkar S, Sarkar D. Potential use of nitrate reductase as a biomarker for the identification of active and dormant inhibitors of Mycobacterium tuberculosis in a THP1 infection model. J Biomol Screening 2012; 17: 966-973
  • 51 Singh U, Akhtar S, Mishra A, Sarkar D. A novel screening method based on menadione mediated rapid reduction of tetrazolium salt for testing of anti-mycobacterial agents. J Microbiol Methods 2011; 84: 202-207
  • 52 Khan A, Sarkar S, Sarkar D. Bactericidal activity of 2-nitroimidazole against the active replicating stage of Mycobacterium bovis BCG and Mycobacterium tuberculosis with intracellular efficacy in THP-1 macrophages. Int J Antimicrob Agents 2008; 32: 40-45
  • 53 Ibrahem I, Córdova A. Direct catalytic intermolecular α‐allylic alkylation of aldehydes by combination of transition‐metal and organocatalysis. Angew Chem Int Ed 2006; 45: 1952-1956
  • 54 Rosebrugh LE, Herbert MB, Marx VM, Keitz BK, Grubbs RH. Highly active ruthenium metathesis catalysts exhibiting unprecedented activity and Z-selectivity. J Am Chem Soc 2013; 35: 1276-1279