Erfahrungsheilkunde 2016; 65(04): 184-191
DOI: 10.1055/s-0042-110366
Wissen
© Karl F. Haug Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG

Vitamin K in der Prävention und Therapie

Uwe Gröber
,
Klaus Kisters
Further Information

Publication History

Publication Date:
30 August 2016 (online)

Zusammenfassung

Das Thema „Vitamin K“ boomt derzeit auf dem Gesundheitsmarkt. Vitamin K ist bekanntlich für die Blutgerinnung von Bedeutung. Aktuelle Forschungsarbeiten weisen zunehmend auf einen hohen Nutzen des antihämorrhagischen Vitamins bei der Prävention und Therapie von Knochen- und Gefäßkrankheiten hin. Vitamin K1 (Phyllochinon) kommt häufiger in Nahrungsmitteln vor als die Vitamin K2-Menachinone (besonders MK-7, Menachinon-7), ist jedoch weniger bioaktiv als diese. Vitamin-K-Verbindungen durchlaufen einen Oxidations-Reduktionszyklus innerhalb der Membran des endoplasmatischen Retikulums und geben Elektronen ab, um spezifische Proteine mittels enzymatischer Gammacarboxylierung von Glutamatgruppen zu aktivieren, bevor sie enzymatisch reduziert werden. Zusammen mit Gerinnungsfaktoren (II, VII, IX, X und Prothrombin), Protein C und Protein S, Osteocalcin (OC), Matrix-GLA-Protein (MGP), Periostin, Gas6 und anderen fördern Vitamin K-abhängige Proteine (VKD) die Kalzium-Homöostase, sie hemmen die Gefäßwandkalzifizierung, fördern die Endothelintegrität, erleichtern die Knochenmineralisierung, sind an der Erneuerung von Gewebe und dem Zellwachstum beteiligt und haben zahlreiche weitere Auswirkungen. In der folgenden Übersicht werden die Geschichte von Vitamin K, die physiologische Bedeutung der K-Vitamere, die neuesten positiven Auswirkungen auf das Skelett- und Herz-Kreislauf-System sowie wichtige Interaktionen mit Medikamenten beschrieben.

Abstract

The topic of “Vitamin K” is currently booming on the health products market. Vitamin K is known to be important for blood coagulation. Current research increasingly indicates that the antihaemorrhagic vitamin has a considerable benefit in the prevention and treatment of bone and vascular disease. Vitamin K1 (phylloquinone) is more abundant in foods but less bioactive than the vitamin K2 menaquinones (especially MK-7, menaquinone-7). Vitamin K compounds undergo oxidation-reduction cycling within the endoplasmic reticulum membrane, donating electrons to activate specific proteins via enzymatic gamma-carboxylation of glutamate groups before being enzymatically reduced. Along with coagulation factors (II, VII, IX, X, and prothrombin), protein C and protein S, osteocalcin (OC), matrix Gla protein (MGP), periostin, Gas6, and other vitamin K-dependent (VKD) proteins support calcium homeostasis, inhibit vessel wall calcification, support endothelial integrity, facilitate bone mineralization, are involved in tissue renewal and cell growth control, and have numerous other effects. The following review describes the history of vitamin K, the physiological significance of the K vitamers, updates skeletal and cardiovascular benefits and important interactions with drugs.

 
  • Literatur

  • 1 Dam H. Cholesterinstoffwechsel in Hühnereiern und Hühnchen. Biochem Z 1929; 215: 475-492
  • 2 Dam H. Haemorrhages in chicks reared on artificial diets: A new deficiency disease. Nature 1934; 133: 909-910
  • 3 Dam H. The antihaemorrhagic vitamin of the chick. Occurrence and chemical nature. Nature 1935; 135: 652-653
  • 4 Dam H, Schonheyder F, Tage-Hansen E. Studies on the mode of action of vitamin K. Biochem J 1936; 30: 1075-1079
  • 5 McKee RW, Binkley SB, MacCorquodale DW et al. The isolation of vitamins K1 and K2. J Am Chem Soc 1939; 61: 129-5
  • 6 Thayer SA, McKee RW, Binkley SB et al. The assay of vitamins K1 and K2. Proc Soc Exp Biol Med 1939; 41: 194-197
  • 7 Nelsestuen GL, Suttie JW. Mode of action of vitamin K. Calcium binding properties of bovine prothrombin. Biochemistry 1972; 11(26): 4961-4964
  • 8 Stenflo J, Suttie JW. Vitamin K-dependent formation of gamma-carboxyglutamic acid. Annu Rev Biochem 1977; 46: 157-172
  • 9 Esmon CT and J.W. Suttie Vitamin K-dependent carboxylase: Solubilization and properties. J Biol Chem 1976; 251(20): 6238-6243
  • 10 Lian JB, Friedman PA. The vitamin K-dependent synthesis of gamma-carboxyglutamic acid by bone microsomes. J Biol Chem 1978; 253(19): 6623-6626
  • 11 Suttie JW. Mechanism of action of vitamin K: synthesis of gamma-carboxyglutamic acid. CRC Crit Rev Biochem 1980; 8(2): 191-223
  • 12 Bell RG. Metabolism of vitamin K and prothrombin synthesis: anticoagulants and the vitamin K-epoxide cycle. Fed Proc 1978; 37(12): 2599-2604
  • 13 Price PA, Urist MR, Otawara Y. Matrix Gla protein, a new gamma-carboxyglutamic acid-containing protein which is associated with the organic matrix of bone. Biochem Biophys Res Commun 1983; 117(3): 765-771
  • 14 Dowd P, Hershline R, Ham SW et al. Vitamin K and energy transduction: a base strength amplification mechanism. Science 1995; 269(5231): 1684-1691
  • 15 Berkner KL. The vitamin K-dependent carboxylase. Annu Rev Nutr 2005; 25: 127-49
  • 16 Olson RE. The function and metabolism of vitamin K. Annu Rev Nutr 1984; 4: 281-337
  • 17 Booth SL, Suttie JW. Dietary intake and adequacy of vitamin K. J Nutr 1998; 128(5): 785-788
  • 18 Suttie JW. Vitamin K: In Health and Disease. CRC Press; 2009
  • 19 Shearer MJ, Newman P. Metabolism and cell biology of vitamin K. Thromb Haemost 2008; 100: 530-547
  • 20 Shutleff W, Aoyagi A. History of miso, soybean jiang (China), jang (Korea) and tauco/taotjo (Indonesia) (200 BC-2009): Extensively annotated bibliography and sourcebook. Soyinfo Center: Lafayette, 2009
  • 21 Theuwissen E, Magdeleyns EJ, Braam LA. Vitamin K-status in healthy volunteers. Food Funct 2014; 5(2): 229-234
  • 22 Szulc P, Chapuy M, Meunier PJ et al. Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 1993; 91(4): 1769-1774
  • 23 Feskanich D, Weber P, Willett WC et al. Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 1999; 69(1): 74-79
  • 24 Yamauchi M, Yamaguchi T, Nawata K et al. Relationships between undercarboxylated osteocalcin and vitamin K intakes, bone turnover, and bone mineral density in healthy women. Clin Nutr 2010; 29(6): 761-765
  • 25 Braam LA, Hoeks AP, Brouns F et al. Beneficial effects of vitamin K on the elastic properties of the vessel wall in postmenopausal women: a follow-up study. Thromb Haemost 2004; 91(2): 373-380
  • 26 Vermeer C, Shearer MJ, Zittermann A et al. Beyond deficiency: potential benefits of increased intakes of vitamin K for bone and vascular health. Eur J Nutr 2004; 43(6): 1-11
  • 27 Cockayne S, Adamson J, Lanham-New S et al. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166(12): 1256-1261
  • 28 Aonuma H, Miyakoshi N, Hongo M et al. Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med 2009; 218(3): 201-205
  • 29 Hirao M, Hashimoto J, Ando W et al. Response of serum carboxylated and undercarboxylated Osteocalcin to alendronate monotherapy and combined therapy with vitamin K2 in postmenopausal women. J Bone Miner Metab 2008; 26 (3): 260-264
  • 30 Matsumoto Y, Mikuni-Takagaki Y, Kozai Y et al. Prior treatment with vitamin K(2) significantly improves the efficacy of risedronate. Osteoporos Int 2009; 20(11): 1863-1872
  • 31 Shiraki M, Yamazaki Y, Shiraki Y et al. High level of serum undercarboxylated osteocalcin in patients with incident fractures during bisphosphonate treatment. J Bone Miner Metab 2010; 28(5): 578-584
  • 32 van Su, Braam LA, Lilien MR et al. The effect of menaquinone-7 (vitamin K2) supplementation on osteocalcin carboxylation in healthy prepubertal children. Br J Nutr 2009; 102(8): 1171-1178
  • 33 Geleijnse JM, Vermeer C, Grobbee DE et al. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: the Rotterdam Study. J Nutr 2004; 134(11): 3100-3105
  • 34 Dalmeijer GW, van de, Magdeleyns E et al. The effect of menaquinone-7 supplementation on circulating species of matrix Gla protein. Atherosclerosis 2012; 225(2): 397-402
  • 35 Caluwé R, Vandecasteele S, Van Vlem B et al. Vitamin K2 supplementation in haemodialysis patients: a randomized dose-finding study. Nephrol Dial Transplant 2013; [Epub ahead of print]
  • 36 Cheung CL, Sahni S, Cheung BM et al. Vitamin K intake and mortality in people with chronic kidney disease from NHANES III. Clin Nutr 2014; pii: S0261-5614(14)00086-7 DOI: 0.1016/j.clnu.2014.03.011. [Epub ahead of print]
  • 37 Spronk HM, Soute BA, Schurgers LJ et al. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J Vasc Res 2003; 40(6): 531-537
  • 38 Knapen MH, Drummen NE, Smit E et al. Three-year low-dose menaquinone-7 supplementation helps decrease bone loss in healthy postmenopausal women. Osteoporos Int 2013; 24(9): 2499-2507
  • 39 Beulens JW, van der A DL, Grobbee DE et al. Dietary phylloquinone and menaquinones intakes and risk of type 2 diabetes. Diabetes Care 2010; 33(8): 1699-1705
  • 40 Liabeuf S, Olivier B, Vemeer C et al. Vascular calcification in patients with type 2 diabetes: the involvement of matrix Gla protein. Cardiovasc Diabetol 2014; 13(1): 85 [Epub ahead of print]
  • 41 Rishavy MA, Berkner KL. Insight into the coupling mechanism of the vitamin K-dependent carboxylase: mutation of histidine 160 disrupts glutamic acid carbanion formation and efficient coupling of vitamin K epoxidation to glutamic acid carboxylation. Biochemistry 2008; 47(37): 9836-9846
  • 42 Shearer M. Vitamin K. Lancet 1995; 345(8944): 229-234
  • 43 Price PA. Role of vitamin-K-dependent proteins in bone metabolism. Annu Rev Nutr 1988; 8: 565-583
  • 44 Shearer MJ, Bach A, Kohlmeier M. Chemistry, nutritional sources, tissue distribution and metabolism of vitamin K with special reference to bone health. J Nutr 1996; 126(4 Suppl): 1181-1186
  • 45 Suttie JW. The importance of menaquinones in human nutrition. Annu Rev Nutr 1995; 15: 399-417
  • 46 Suttie JW. Synthesis of vitamin K-dependent proteins. FASEB J 1993; 7(5): 445-452
  • 47 Schurgers LJ, Vermeer C. Determination of phylloquinone and menaquinones in food. Effect of food matrix on circulating vitamin K concentrations. Haemostasis. 2000; 30(6): 298-307
  • 48 Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J 2012; 11: 93 DOI: 10.1186/1475-2891-11–93.
  • 49 Theuwissen E, Teunissen KJ, Spronk HM et al. Effect of low-dose supplements of menaquinone-7 (vitamin K2 ) on the stability of oral anticoagulant treatment: dose-response relationship in healthy volunteers. J Thromb Haemost 2013; 11(6): 1085-1092
  • 50 Sato T, Schurgers LJ, Uenishi K. Comparison of menaquinone-4 and menaquinone-7 bioavailability in healthy women. Nutr J 2012; 11: 93 DOI: 10.1186/1475-2891-11–93.
  • 51 Schurgers LJ, Teunissen KJ, Hamulyak K et al. Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 2007; 109: 3279-83
  • 52 Vossen LM, Schurgers LJ, van Varik BJ et al. Menaquinone-7 Supplementation to Reduce Vascular Calcification in Patients with Coronary Artery Disease: Rationale and Study Protocol (VitaK-CAC Trial). Nutrients 2015; 7(11): 8905-8915
  • 53 Huang ZB, Wan SL, Lu YJ et al. Does vitamin K2 play a role in the prevention and treatment of osteoporosis for postmenopausal women: a meta-analysis of randomized controlled trials. Osteoporos Int 2015; 26(3): 1175-1186
  • 54 Kurnatowska I, Grzelak P, Masajtis-Zagajewska A et al. Effect of vitamin K2 on progression of atherosclerosis and vascular calcification in nondialyzed patients with chronic kidney disease stages 3-5. Pol Arch Med Wewn 2015; 125(9): 631-640
  • 55 Gröber U, Reichrath J, Kisters K, Holick MF. Vitamin D. Update 2013. From rickets prophylaxis to general healthcare. Dermatoendocrinol 2013; 5: 331-347
  • 56 Gröber U, Reichrath J, Holick MF. Live longer with vitamin D?. Nutrients 2015; 7(3): 1871-1880
  • 57 Gigante A, Brugè F, Cecconi S et al. Vitamin MK-7 enhances vitamin D3-induced osteogenesis in hMSCs: modulation of key effectors in mineralization and vascularization. J Tissue Eng Regen Med 2015; 9(6): 691-701
  • 58 Kanellakis S, Moschonis G, Tenta R et al. Changes in parameters of bone metabolism in postmenopausal women following a 12-month intervention period using dairy products enriched with calcium, vitamin D, and phylloquinone (vitamin K(1)) or menaquinone-7 (vitamin K (2)): the Postmenopausal Health Study II. Calcif Tissue Int. 2012; 90(4): 251-262