Planta Med 2016; 82(16): 1438-1445
DOI: 10.1055/s-0042-110316
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Phytochemical Study of Eryngium triquetrum: Isolation of Polyacetylenes and Lignans

Fouzia Bouzergoune
1   Laboratoire de Chimie et Chimie de lʼenvironnement (L. C. C. E.), Faculté des Sciences de la Matière, Département de Chimie, Université de Batna 1, Batna, Algérie
,
Maria Letizia Ciavatta
2   Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli, Napoli, Italy
,
Fatma Bitam
1   Laboratoire de Chimie et Chimie de lʼenvironnement (L. C. C. E.), Faculté des Sciences de la Matière, Département de Chimie, Université de Batna 1, Batna, Algérie
3   Faculté de Médecine, Département de Pharmacie, Université de Batna 2, Batna, 05000, Algérie
,
Marianna Carbone
2   Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli, Napoli, Italy
,
Mohamed Cherif Aberkane
1   Laboratoire de Chimie et Chimie de lʼenvironnement (L. C. C. E.), Faculté des Sciences de la Matière, Département de Chimie, Université de Batna 1, Batna, Algérie
,
Margherita Gavagnin
2   Consiglio Nazionale delle Ricerche (CNR), Istituto di Chimica Biomolecolare (ICB), Pozzuoli, Napoli, Italy
› Author Affiliations
Further Information

Publication History

received 18 April 2016
revised 26 May 2016

accepted 05 June 2016

Publication Date:
24 June 2016 (online)

Abstract

Phytochemical investigation of the ethyl acetate extract from the aerial parts of Eryngium triquetrum Vahl resulted in the isolation of new polyacetylenes, triquetridiol (6) and trans-epoxy-triquetrol (7a/7b, diastereomeric mixture), and the lignan demethoxy carolignan Z (8a/8b, erythro/threo pair), together with a series of related known metabolites. Additionally, some already reported phenolic and flavonoid compounds were also identified in the extract. Structural elucidation of the new compounds was made by spectroscopic analysis, mainly NMR and mass spectrometry. To the best of our knowledge, this is the first report of polyacetylenes and lignans from E. triquetrum.

 
  • References

  • 1 Wörz A. A taxonomic index of the species of Eryngium L. (Apiaceae: Saniculoideae). Stuttgarter Beitr Naturk Ser A 1999; 596: 1-48
  • 2 Ebermann R, Alth G, Kreitner M, Kubin A. Natural products derived from plants as potential drugs for the photodynamic destruction of tumor cells. J Photochem Photobiol 1996; 36?B: 95-97
  • 3 Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E. Ethnopharmacology of Mexican Asteraceae (Compositae). Annu Rev Pharmacol Toxicol 1998; 38: 539-565
  • 4 Wang P, Su Z, Yuan W, Deng G, Li S. Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharmaceutical Crops 2012; 3: 99-120
  • 5 Quezel P, Santa S. Nouvelle Flore de lʼAlgérie et des Régions DésertiquesMéridionales, Vol. 1 – 2. Paris: CNRS; 1963: 650
  • 6 Khalfallah A, Berrehal D, Kabouche A, Karioti A, Bilia AR, Kabouch Z. Flavonoids, antioxidant and antibacterial activities of Eryngium triquetrum . Chem Nat Compd 2014; 50: 130-132
  • 7 Schulte KE, Wulfhorst G. Polyaceylene aus Aegopodium podagraria L. Arch Pharm 1977; 310: 285-298
  • 8 Schulte KE, Pötter B. Polyaceylene aus Pituranthus tortousus (Desf.) Bnth.u. Hook. Arch Pharm 1977; 310: 945-963
  • 9 Shim SC, Chang S-K, Hur CW, Kim CK. A polyacetylenic compound from Panax ginseng roots. Phytochemistry 1987; 26: 2849-2850
  • 10 Hirakura K, Morita M, Nakajima K, Ikeya Y, Mitsuhashi H. Three acetylenic compounds from roots of Panax ginseng . Phytochemistry 1992; 31: 899-903
  • 11 Bernart MW, Cardellina JH, Balaschak MS, Alexander MR, Shoemaker RH, Boyd MR. Cytotoxic falcarinol oxylipins from Dendropanax arboreus . J Nat Prod 1996; 59: 748-753
  • 12 Zidorn C, Jöhrer K, Ganzera M, Schubert B, Sigmund EM, Mader J, Greil R, Ellmerer EP, Stuppner H. Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. J Agric Food Chem 2005; 53: 2518-2523
  • 13 Satoh M, Watanabe M, Kawahata M, Mohri K, Yoshida Y, Isobe K, Fujimoto Y. Synthesis of Panax acetylenes: chiral syntheses of acetylpanaxydol, PQ-3 and panaxydiol. Chem Pharm Bull 2004; 52: 418-421
  • 14 Sullivan GR, Dale JA, Mosher HS. Correlation of configuration and fluorine-19 chemical shifts of. alpha.-methoxy-.alpha.-trifluoromethylphenyl acetate derivatives. J Org Chem 1973; 38: 2143-2147
  • 15 Ohtani I, Kusumi T, Kashman Y, Kakisawa H. High-field FT NMR application of Mosherʼs method. The absolute configurations of marine terpenoids. J Am Chem Soc 1991; 113: 4092-4096
  • 16 Takahashi M, Yoshikura M. Studies on the components of Panax ginseng C. A. Meyer. 3. On the ethereal extract of Ginseng radix Alba. (3). On the structure of a new acetylene derivative “panaxynol”. J Pharm Soc Jpn 1964; 84: 757-759
  • 17 Hansen L, Boll PM. Polyacetylenes in Araliaceae: their chemistry, biosynthesis and biological significance. Phytochemistry 1986; 25: 285-293
  • 18 Gafner F, Reynolds GW, Rodriguez E. The diacetylene 11, 12-dehydrofalcarinol from Hedera helix . Phytochemistry 1989; 28: 1256-1257
  • 19 Bernart MW, Hallock YF, Cardellina II JH, Boyd MR. Stereochemistry of enynols – a caveat on the exciton chirality method. Tetrahedron Lett 1994; 35: 993-994
  • 20 Zheng G, Lu W, Aisa HA, Cai J. Absolute configuration of falcarinol, a potent antitumor agent commonly occurring in plants. Tetrahedron Lett 1999; 40: 2181-2182
  • 21 Lutomski J, Luan TC. Polyacetylenes in the Araliaceae family. Part II. Polyacetylenes from the roots of Polyscias fruticosa (L.) Harms. Herba Pol 1992; 38: 3-11
  • 22 Xu G-H, Choo S-J, Ryoo I-J, Kim Y-H, Paek K-Y, Yoo I-D. Polyacetylenes from the tissue cultured adventitious roots of Panax ginseng C.A. Meyer. Nat Prod Sci 2008; 14: 177-181
  • 23 Chan HH, Sun HD, Reddy MVB, Wu TS. Potent α-glucosidase inhibitors from the roots of Panax japonicus C. A. Meyer var. major . Phytochemistry 2010; 71: 1360-1364
  • 24 Ning J, Di Y-T, Li S-F, Geng Z-L, He H-P, Wang Y-H, Wang Y-Y, Li Y, Li S-L, Hao X-J. Polyynes from Toona ciliata var. ciliata and related cytotoxic activity. Helv Chim Acta 2011; 94: 376-381
  • 25 Fujimoto Y, Satoh M, Takeuchi N, Kirisawa M. Cytotoxic acetylenes from Panax quinquefolium . Chem Pharm Bull 1991; 39: 521-523
  • 26 Appendino G, Pollastro F, Verotta L, Ballero M, Romano A, Wyrembek P, Szczuraszek K, Mozrzymas JW, Taglialatela-Scafati O. Polyacetylenes from Sardinian Oenanthefistulosa: a molecular clue to risus sardonicus. J Nat Prod 2009; 72: 962-965
  • 27 Yang MC, Kwon HC, Kim YJ, Lee KR, Yang HO. Oploxynes A and B, polyacetylenes from the stems of Oplopanax elatus . J Nat Prod 2010; 73: 801-805
  • 28 Yadav JS, Boyapelly K, Alugubelli SR, Pabbaraja S, Vangala JR, Kalivendi SV. Stereoselective total synthesis of (+)-oploxyne A, (−) -oploxyne B, and their C-10 epimers and structure revision of natural oploxyne B. J Org Chem 2011; 76: 2568-2576
  • 29 Haruna M, Koube T, Ito K, Murata H. Balanophonin, a new neo-lignan from Balanophora japonica Makino. Chem Pharm Bull 1982; 30: 1525-1527
  • 30 Li YC. KuoYH. Four new compounds, ficusal, ficusesquilignan A, B, and ficusolide diacetate from the heartwood of Ficus microcarpa . Chem Pharm Bull 2000; 48: 1862-1865
  • 31 Deyama T. The constituents of Eucommia ulmoides OLIV. I. Isolation of (+)-medioresinol di-O-β-D-glucopyranoside. Chem Pharm Bull 1983; 31: 2993-2997 (and references cited therein)
  • 32 Houghton PJ. Lignans and neolignans from Buddleya davidii . Phytochemistry 1985; 24: 819-826
  • 33 Xiong L, Zhu C, Li Y, Tian Y, Lin S, Yuan S, Hu J, Hou Q, Chen N, Yang Y, Shi J. Lignans and neolignans from Sinocalamus affinis and their absolute configuration. J Nat Prod 2011; 74: 1188-1200
  • 34 Karikome H, Mimaki Y, Sashida Y. A butanolide and phenolics from Machilus thunbergii . Phytochemistry 1991; 30: 315-319
  • 35 Seca AML, Silva AMS, Silvestre AJD, Cavaleiro JAS, Domingues FMJ, Pascoal-Neto C. Phenolic constituents from the core of Kenaf (Hibiscus cannabinus). Phytochemistry 2001; 56: 759-767
  • 36 Rudiyansyah. Lambert LK, Garson MJ. Lignans and triterpenes from the bark of Durio carinatus and Durio oxleyanus . J Nat Prod 2010; 73: 1649-1654
  • 37 Jiang C, Luo P, Zhao Y, Hong J, Morris-Natschke SL, Xu J, Chen CH, Lee KH, Gu Q. Carolignans from the Aerial Parts of Euphorbia sikkimensis and Their Ant-HIV Activity. J Nat Prod 2016; 79: 578-583
  • 38 Paula VF, Barbosa LCA, Howarth OW, Demuner AJ, Cass QB, Vieira IJC. Lignans from Ochroma lagopus Swartz. Tetrahedron 1995; 45: 12453-12462
  • 39 Rayanil K-o. Nimnoun C, Tuntiwachwuttikul P. New phenolics from the wood of Casearia grewiifolia . Phytochem Lett 2012; 5: 59-62
  • 40 Karioti A, Bilia AR, Skaltsa H. Quercus ilex L.: A rich source of polyacylated flavonoid glucosides. Food Chem 2010; 123: 131-142