Neuroradiologie Scan 2016; 06(03): 215-238
DOI: 10.1055/s-0042-109937
Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

Neuroarthropathie der Wirbelsäule: Pathophysiologie, klinisches Bild, Bildgebungsmerkmale und Differenzialdiagnose[1]

Spinal neuroarthropathy: pathophysiology, clinical and imaging features, and differential diagnosis
Luke N. Ledbetter
,
Karen L. Salzman
,
R. Kent Sanders
,
Lubdha M. Shah
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
01. August 2016 (online)

Zusammenfassung

Die Neuroarthropathie der Wirbelsäule oder Charcot-Wirbelsäule ist eine progredient verlaufende, destruierende Gelenkerkrankung, die nach Verlust der neuroprotektiven Sensibilität und der propriozeptiven Reflexe auftritt. Die klinische Diagnose ist wegen der unterschiedlich langen Zeit zwischen der initialen neurologischen Schädigung und dem Auftreten der Arthropathie und wegen der infolge der vorbestehenden neurologischen Ausfälle eingeschränkten Symptomatik schwierig. Die spinale Neuroarthropathie stellt auch deshalb eine diagnostische Herausforderung dar, weil ihre Bildgebungsmerkmale denen bei anderen Erkrankungen der Wirbelsäule, wie z. B. Diszitis/Osteomyelitis, Knochentuberkulose, hämodialysebedingte Spondylarthropathie und Pseudarthrose, ähneln. Das für die Diagnose einer spinalen Neuroarthropathie wichtigste Bildgebungskennzeichen ist die Beteiligung sowohl der anterioren als auch der posterioren Elemente der thorakolumbalen bzw. lumbosakralen Gelenke. Als zusätzliche Hinweise finden sich im Bildgebungsbefund das Vakuumphänomen innerhalb der Bandscheibe (ein Zeichen abnorm erhöhter Beweglichkeit), Malalignment und paraspinale Weichgeweberaumforderungen oder Flüssigkeitsansammlungen, die Knochendebris enthalten. In manchen Fällen kann sich jedoch der Befund trotz dieser Zeichen mit dem einer Infektion überschneiden oder es liegt eine spinale Neuroarthropathie mit Superinfektion vor. In diesen Fällen kann eine Biopsie erforderlich sein. Voraussetzung für die Entwicklung einer spinalen Neuroarthropathie ist eine vorbestehende neurologische Erkrankung, in den meisten Fällen eine traumatische Rückenmarkschädigung. In den Bereichen der empfindungslos gewordenen Wirbelsäule, die die größte Beweglichkeit aufweisen und gleichzeitig der stärksten Gewichtsbelastung ausgesetzt sind, kommt es wiederholt zu Mikrotraumata und unkontrollierter Hyperämie mit der Folge einer Destruktion der Intervertebralgelenke. Der progressive und destruierende Charakter der spinalen Neuroarthropathie verursacht erhebliche Deformitäten, Funktionsverlust und häufig weitere neurologische Ausfälle. Die Patienten stellen sich mit Deformitäten, Rückenschmerzen, hörbaren Geräuschen bei Bewegung oder neu aufgetretenen neurologischen Symptomen vor. Die Behandlung besteht hauptsächlich aus chirurgischem Débridement, Reposition und Fusion. Der Radiologe kann zur Einleitung einer frühen Intervention dadurch beitragen, dass er anhand der wichtigsten Bildgebungsmerkmale zwischen spinaler Neuroarthropathie und ähnlich aussehenden Bildgebungsbefunden unterscheidet und eine weitere neurologische Verschlechterung verhindert.

Abstract

Spinal neuroarthropathy (SNA), or Charcot spine, is a progressive destructive arthropathy occurring after loss of neuroprotective sensation and proprioceptive reflexes. Clinical diagnosis is difficult because of the variable length to presentation after initial neurologic damage and the limited symptoms given preexisting neurologic deficits. SNA is also a diagnostic challenge because its imaging features are similar to those of spinal conditions such as discitis-osteomyelitis, osseous tuberculosis, hemodialysis-related spondyloarthropathy, and pseudarthrosis. The most important imaging clues for diagnosis of SNA are involvement of both anterior and posterior elements at the thoracolumbar and lumbosacral junctions. Additional imaging clues include vacuum phenomenon within the disk (indicating excessive motion), malalignment, and paraspinal soft-tissue masses or fluid collections containing bone debris. Despite these imaging signs, findings may overlap in some cases with those of infection, or SNA can be superinfected, and biopsy may be necessary. Development of SNA requires a preexisting neurologic condition, most commonly traumatic spinal cord injury. Areas of greatest mobility and weight bearing within the desensate spine experience repetitive microtrauma and unregulated hyperemia, leading to destruction of the intervertebral articulations. The progressive and destructive nature of SNA causes substantial deformity, loss of function, and often further neurologic deficits. Patients present with deformity, back pain, audible noises during movement, or new neurologic symptoms. The mainstay of treatment is surgical débridement, reduction, and fusion. The radiologist can help initiate early intervention by using key imaging features to distinguish SNA from imaging mimics and prevent further neurologic deterioration.

1 © 2016 The Radiological Society of North America. All rights reserved. Originally published in English in RadioGraphics 2016; 36: 783 – 799. Online published in 10.1148 /rg.2016150121. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.


 
  • Literatur

  • 1 Mitchell JK. On a new practice in acute and chronic rheumatism. Am J Med Sci 1831; 8: 55-64
  • 2 Charcot JM. Sur quelques arthropathies qui paraissent dépendre d’une lésion du cerveau ou de la moelle épinière. Arch Physiol Norm Pathol 1868; 1: 161-178
  • 3 Gupta R. A short history of neuropathic arthropathy. Clin Orthop Relat Res 1993; 296: 43-49
  • 4 Eloesser L. On the nature of neuropathic affection of the joints. Ann Surg 1917; 66: 201-207
  • 5 Kalen V, Isono SS, Cho CS et al. Charcot arthropathy of the spine in long-standing paraplegia. Spine 1987; 12: 42-47
  • 6 Schwartz HS. Traumatic Charcot spine. J Spinal Disord 1990; 3: 269-275
  • 7 Brown CW, Jones B, Donaldson DH et al. Neuropathic (Charcot) arthropathy of the spine after traumatic spinal paraplegia. Spine 1992; 17: S103-S108
  • 8 Allali F, Rahmouni R, Hajjaj-Hassouni N. Tabetic arthropathy: a report of 43 cases. Clin Rheumatol 2006; 25: 858-860
  • 9 Barrey C, Massourides H, Cotton F et al. Charcot spine: two new case reports and a systematic review of 109 clinical cases from the literature. Ann Phys Rehabil Med 2010; 53: 200-220
  • 10 Harrison MJ, Sacher M, Rosenblum BR et al. Spinal Charcot arthropathy. Neurosurgery 1991; 28: 273-277
  • 11 Vialle R, Parker F, Lepeintre JF et al. Charcot spine: a complication of medullary arteriovenous malformation – case illustration. J Neurosurg Spine 2004; 1: 141
  • 12 Azzedine H, Ravisé N, Verny C et al. Spine deformities in Charcot-Marie-Tooth 4C caused by SH3TC2 gene mutations. Neurology 2006; 67: 602-606
  • 13 Cassidy RC, Shaffer WO. Charcot arthropathy because of congenital insensitivity to pain in an adult. Spine J 2008; 8: 691-695
  • 14 Sliwa JA, Rippe D, Do V. Charcot spine in a person with congenital insensitivity to pain with anhydrosis: a case report of re-diagnosis. Arch Phys Med Rehabil 2008; 89: 568-571
  • 15 Jameson R, Garreau de Loubresse C, Maqdes A. Spinal neuroarthropathy associated with Guillain-Barré syndrome. Eur Spine J 2010; 19: S108-S113
  • 16 Lacout A, Lebreton C, Mompoint D et al. CT and MRI of spinal neuroarthropathy. AJR Am J Roentgenol 2009; 193: W505-W514
  • 17 Morita M, Miyauchi A, Okuda S et al. Charcot spinal disease after spinal cord injury. J Neurosurg Spine 2008; 9: 419-426
  • 18 Culling J, Gibberd FB. Charcot’s disease of the spine. Proc R Soc Med 1974; 67: 1026-1027
  • 19 Selmi F, Frankel HL, Kumaraguru AP et al. Charcot joint of the spine: a cause of autonomic dysreflexia in spinal cord injured patients. Spinal Cord 2002; 40: 481-483
  • 20 Aebli N, Pötzel T, Krebs J. Characteristics and surgical management of neuropathic (Charcot) spinal arthropathy after spinal cord injury. Spine J 2014; 14: 884-891
  • 21 Hong J, Sanfilippo JA, Rihn J et al. Complications in the management of Charcot spinal arthropathy. J Neurosurg Spine 2009; 11: 365-368
  • 22 Haus BM, Hsu AR, Yim ES et al. Long-term follow-up of the surgical management of neuropathic arthropathy of the spine. Spine J 2010; 10: e6-e16
  • 23 Devlin VJ, Ogilvie JW, Transfeldt EE et al. Surgical treatment of neuropathic spinal arthropathy. J Spinal Disord 1991; 4: 319-328
  • 24 Moreau S, Lonjon G, Jameson R et al. Do all Charcot spine require surgery?. Orthop Traumatol Surg Res 2014; 100: 779-784
  • 25 Crim JR, Bassett LW, Gold RH et al. Spinal neuroarthropathy after traumatic paraplegia. AJNR Am J Neuroradiol 1988; 9: 359-362
  • 26 Standaert C, Cardenas DD, Anderson P. Charcot spine as a late complication of traumatic spinal cord injury. Arch Phys Med Rehabil 1997; 78: 221-225
  • 27 Vialle R, Mary P, Tassin JL et al. Charcot’s disease of the spine: diagnosis and treatment. Spine 2005; 30: E315-E322
  • 28 Brower AC, Allman RM. Pathogenesis of the neurotrophic joint: neurotraumatic vs. neurovascular. Radiology 1981; 139: 349-354
  • 29 Wukich DK, Sung W. Charcot arthropathy of the foot and ankle: modern concepts and management review. J Diabetes Complications 2009; 23: 409-426
  • 30 Baker N, Green A, Krishnan S et al. Microvascular and C-fiber function in diabetic Charcot neuroarthropathy and diabetic peripheral neuropathy. Diabetes Care 2007; 30: 3077-3079
  • 31 Mascarenhas JV, Jude EB. Pathogenesis and medical management of diabetic Charcot neuroarthropathy. Med Clin North Am 2013; 97: 857-872
  • 32 Larson SA, Burns PR. The pathogenesis of Charcot neuroarthropathy: current concepts. Diabet Foot Ankle 2012; 3
  • 33 Young MJ, Marshall A, Adams JE et al. Osteopenia, neurological dysfunction, and the development of Charcot neuroarthropathy. Diabetes Care 1995; 18: 34-38
  • 34 Gough A, Abraha H, Li F et al. Measurement of markers of osteoclast and osteoblast activity in patients with acute and chronic diabetic Charcot neuroarthropathy. Diabet Med 1997; 14: 527-531
  • 35 Wagner SC, Schweitzer ME, Morrison WB et al. Can imaging findings help differentiate spinal neuropathic arthropathy from disk space infection? Initial experience. Radiology 2000; 214: 693-699
  • 36 Weinstein RS, Jilka RL, Parfitt AM et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 1998; 102: 274-282
  • 37 Maldague BE, Noel HM, Malghem JJ. The intravertebral vacuum cleft: a sign of ischemic vertebral collapse. Radiology 1978; 129: 23-29
  • 38 Theodorou DJ. The intravertebral vacuum cleft sign. Radiology 2001; 221: 787-788
  • 39 Park YH, Taylor JA, Szollar SM et al. Imaging findings in spinal neuroarthropathy. Spine 1994; 19: 1499-1504
  • 40 Ledermann HP, Schweitzer ME, Morrison WB et al. MR imaging findings in spinal infections: rules or myths?. Radiology 2003; 228: 506-514
  • 41 Craig JG, Amin MB, Wu K et al. Osteomyelitis of the diabetic foot: MR imaging – pathologic correlation. Radiology 1997; 203: 849-855
  • 42 Modic MT, Ross JS. Lumbar degenerative disk disease. Radiology 2007; 245: 43-61
  • 43 Bielecki DK, Sartoris D, Resnick D et al. Intraosseous and intradiscal gas in association with spinal infection: report of three cases. AJR Am J Roentgenol 1986; 147: 83-86
  • 44 Diehn FE. Imaging of spine infection. Radiol Clin North Am 2012; 50: 777-798
  • 45 Pertuiset E, Beaudreuil J, Lioté F et al. Spinal tuberculosis in adults: a study of 103 cases in a developed country, 1980–1994. Medicine (Baltimore) 1999; 78: 309-320
  • 46 Avadhani A, Shetty AP, Rajasekaran S. Isolated tuberculosis of the lumbar apophyseal joint. Spine J 2010; 10 : e1-e4
  • 47 Ridley N, Shaikh MI, Remedios D et al. Radiology of skeletal tuberculosis. Orthopedics 1998; 21: 1213-1220
  • 48 Rath SA, Neff U, Schneider O et al. Neurosurgical management of thoracic and lumbar vertebral osteomyelitis and discitis in adults: a review of 43 consecutive surgically treated patients. Neurosurgery 1996; 38: 926-933
  • 49 Jain AK. Tuberculosis of the spine: a fresh look at an old disease. J Bone Joint Surg Br 2010; 92: 905-913
  • 50 Lindahl S, Nyman RS, Brismar J et al. Imaging of tuberculosis IV. Spinal manifestations in 63 patients. Acta Radiol 1996; 37: 506-511
  • 51 Moon MS. Tuberculosis of the spine: controversies and a new challenge. Spine 1997; 22: 1791-1797
  • 52 al-Shahed MS, Sharif HS, Haddad MC et al. Imaging features of musculoskeletal brucellosis. RadioGraphics 1994; 14: 333-348
  • 53 Sharif HS, Aideyan OA, Clark DC et al. Brucellar and tuberculous spondylitis: comparative imaging features. Radiology 1989; 171: 419-425
  • 54 Resnick D, Niwayama G. Degenerative disease of the spine. In: Resnick D, , ed. Diagnosis of bone and joint disorders. 3rd. ed. Philadelphia, Pa: Saunders; 1995: 1372-1462
  • 55 Twomey LT, Taylor JR. Age changes in lumbar vertebrae and intervertebral discs. Clin Orthop Relat Res 1987; 224: 97-104
  • 56 Pfirrmann CW, Metzdorf A, Zanetti M et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26: 1873-1878
  • 57 Modic MT, Steinberg PM, Ross JS et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988; 166 (1 Pt. 1) 193-199
  • 58 Patel KB, Poplawski MM, Pawha PS et al. Diffusion-weighted MRI “claw sign” improves differentiation of infectious from degenerative modic type 1 signal changes of the spine. AJNR Am J Neuroradiol 2014; 35: 1647-1652
  • 59 Theodorou DJ, Theodorou SJ, Resnick D. Imaging in dialysis spondyloarthropathy. Semin Dial 2002; 15: 290-296
  • 60 Danesh F, Ho LT. Dialysis-related amyloidosis: history and clinical manifestations. Semin Dial 2001; 14: 80-85
  • 61 Ross LV, Ross GJ, Mesgarzadeh M et al. Hemodialysis-related amyloidomas of bone. Radiology 1991; 178: 263-265
  • 62 Kiss E, Keusch G, Zanetti M et al. Dialysis-related amyloidosis revisited. AJR Am J Roentgenol 2005; 185: 1460-1467
  • 63 Gruskay JA, Webb ML, Grauer JN. Methods of evaluating lumbar and cervical fusion. Spine J 2014; 14: 531-539
  • 64 Hermann KG, Althoff CE, Schneider U et al. Spinal changes in patients with spondyloarthritis: comparison of MR imaging and radiographic appearances. RadioGraphics 2005; 25: 559-569 ; discussion 569–570
  • 65 Bennett DL, Ohashi K, El-Khoury GY. Spondyloarthropathies: ankylosing spondylitis and psoriatic arthritis. Radiol Clin North Am 2004; 42: 121-134
  • 66 Jevtic V, Kos-Golja M, Rozman B et al. Marginal erosive discovertebral “Romanus” lesions in ankylosing spondylitis demonstrated by contrast enhanced Gd-DTPA magnetic resonance imaging. Skeletal Radiol 2000; 29: 27-33
  • 67 Rasker JJ, Prevo RL, Lanting PJ. Spondylodiscitis in ankylosing spondylitis, inflammation or trauma? A description of six cases. Scand J Rheumatol 1996; 25: 52-57
  • 68 Vinson EN, Major NM. MR imaging of ankylosing spondylitis. Semin Musculoskelet Radiol 2003; 7: 103-113
  • 69 Cotten A, Flipo RM, Mentre A et al. SAPHO syndrome. RadioGraphics 1995; 15: 1147-1154
  • 70 Boutin RD, Resnick D. The SAPHO syndrome: an evolving concept for unifying several idiopathic disorders of bone and skin. AJR Am J Roentgenol 1998; 170: 585-591
  • 71 Laredo JD, Vuillemin-Bodaghi V, Boutry N et al. SAPHO syndrome: MR appearance of vertebral involvement. Radiology 2007; 242: 825-831
  • 72 Remedios D, Natali C, Saifuddin A. Case report: MRI of vertebral osteitis in early ankylosing spondylitis. Clin Radiol 1998; 53: 534-536
  • 73 Maugars Y, Berthelot JM, Ducloux JM et al. SAPHO syndrome: a followup study of 19 cases with special emphasis on enthesis involvement. J Rheumatol 1995; 22: 2135-2141
  • 74 Takigawa T, Tanaka M, Nakanishi K et al. SAPHO syndrome associated spondylitis. Eur Spine J 2008; 17: 1391-1397