Drug Res (Stuttg) 2016; 66(10): 506-519
DOI: 10.1055/s-0042-109865
Review
© Georg Thieme Verlag KG Stuttgart · New York

Applications of Copolymeric Nanoparticles in Drug Delivery Systems

H. Danafar
1   Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
2   Department of Medicinal Chemistry, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
› Author Affiliations
Further Information

Publication History

received 14 April 2016

accepted 24 May 2016

Publication Date:
12 July 2016 (online)

Abstract

Nanoparticles have outstanding compensate compared with other drug carriers, as a result of their small particle size and bulky and changeable surface. Recently, block copolymers have get imaginary movement on the continuing research in the area of drug delivery technology, because of their potential to afford a biomaterial having an extensive series of amphiphilic personality, in addition to targeting the drugs to specific position. Block copolymers are prepared up of blocks of different polymerized monomers. Between the block copolymers, amphiphilic block copolymers can self-assemble to form nano-sized vehicles, for example micelles, liposomes, polymerases and hydrogels in aqueous or non-aqueous media. This review evaluated the synthesis, construction, and major applications of amphiphilic block copolymer and analogous vehicles in order to provide an overview of the present features of functionalized block copolymers for drug delivery applications.

 
  • References

  • 1 Kanai M, Imaizumi A, Otsuka Y et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol 2012; 69: 65-70
  • 2 Gao S, Sun J, Fu D. Preparation, characterization and pharmacokinetic studies of tacrolimus-dimethyl-beta-cyclodextrin inclusion complex-loaded albumin nanoparticles. Int J Pharm 2012; 427: 410-416
  • 3 Hamidi M, Shahbazi MA, Rostamizadeh K. Copolymers: efficient carriers for intelligent nanoparticulate drug targeting and gene therapy. MacromolBiosci 2012; 12: 144-164
  • 4 Tong J, Yi X, Luxenhofer R et al. Conjugates of superoxide dismutase 1 with amphiphilic poly(2-oxazoline) block copolymers for enhanced brain delivery: synthesis, characterization and evaluation in vitro and in vivo. Mol Pharm 2013; 10: 360-377
  • 5 Danafar H, Rostamizadeh K, Davaran S et al. PLA-PEG-PLA copolymer-based polymersomes as nanocarriers for delivery of hydrophilic and hydrophobic drugs: preparation and evaluation with atorvastatin and lisinopril. Drug Dev Ind Pharm 2014; 40: 1411-1420
  • 6 Fonseca C, Simoes S, Gaspar R. Paclitaxel-loaded PLGA nanoparticles: preparation, physiochemical characterization and in vitro anti-tumoral activity. Journal of controlled release 2002; 83: 273-286
  • 7 Patel B, Gupta V, Ahsan F. PEG-PLGA based large porous particles for pulmonary delivery of a highly soluble drug, low molecular weight heparin. J Control Release 2012; 162: 310-320
  • 8 Li S, Tiwari A. Smart polymer materials for biomedical applications. Nova Science Publishers; 2011
  • 9 Savic R, Eisenberg A, Maysinger D. Block copolymer micelles as delivery vehicles of hydrophobic drugs: micelle-cell interactions. J Drug Target 2006; 14: 343-355
  • 10 Lomas H, Massignani M, Lewis L et al. Faraday Discuss. Chem Soc 2008; 139: 143
  • 11 Xia W, Chang J, Lin J et al. The pH-controlled dual-drug release from mesoporous bioactive glass/polypeptide graft copolymer nanomicelle composites. Eur J Pharm Biopharm 2008; 69: 546-552
  • 12 Husseini AG, Pitt WG. Micelles and nanoparticles for ultrasonic drug and gene delivery. Adv Drug Deliv Rev 2008; 60: 1137-1152
  • 13 Danafar H. MPEG-PCL copolymeric nanoparticles in drug delivery systems. Cogent Medicine 2016; 3: 1142411
  • 14 Yoon W. Embolic agents used for bronchial artery embolisation in massive haemoptysis. Expert opinion on pharmacotherapy 2004; 5: 361-367
  • 15 Lomas H, Canton I, MacNeil S et al. Adv Mat 2007; 19: 4238
  • 16 Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 2009; 48: 4488-4507
  • 17 Qian Y, Zha Y, Feng B et al. PEGylated poly(2-(dimethylamino) ethyl methacrylate)/DNA polyplex micelles decorated with phage-displayed TGN peptide for brain-targeted gene delivery. Biomaterials 2013; 34: 2117-2129
  • 18 Lazzari M, Liu G, Lecommandoux S. Block copolymers in nanoscience. Weinheim: Wiley-VCH; 2006
  • 19 Schacher FH, Rupar PA, Manners I. Functional block copolymers: nanostructured materials with emerging applications. AngewChemInt Ed Engl 2012; 51: 7898-7921
  • 20 Dan M, Scott DF, Hardy PA. Block copolymer cross-linked nanoassemblies improve particle stability and biocompatibility of superparamagnetic iron oxide nanoparticles. Pharm Res 2013; 30: 552-561
  • 21 Nakanishi M, Patil R, Ren Y et al. Enhanced stability and knockdown efficiency of poly(ethylene glycol)-b-polyphosphoramidate/siRNA micellar nanoparticles by co-condensation with sodium triphosphate. Pharm Res 2011; 28: 1723-1732
  • 22 Bian Q, Xiao Y, Zhou C et al. Synthesis, self-assembly, and pH-responsive behavior of (photo-crosslinked) star amphiphilic triblock copolymer. J Colloid Interface Sci 2013; 392: 141-150
  • 23 Panyam J, Dali MM, Sahoo SK et al. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. Journal of Controlled Release 2003; 92: 173-187
  • 24 Mainardes RM, Evangelista RC. Praziquantel-loaded PLGA nanoparticles: preparation and characterization. J Microencapsul 2005; 22: 13-24
  • 25 Siegel SJ, Winey RE. Surgically implantable long-term antipsychotic delivery systems for the treatment of schizophrenia. Neuropsychopharmacology 2002; 26: 817-823
  • 26 Meng F, Hiemstra C, Engbers G et al. Biodegradable Polymersomes. Macromolecules 2003; 36: 3004-3006
  • 27 Song X, Zhao Y, Wu W et al. PLGA nanoparticles simultaneously loaded with vincristine sulfate and verpamil hydrochloride: systematic study of particle size and drug entrapment efficiency. Int J Pharm 2008; 350: 320-329
  • 28 Chang J, Jallouli Y, Kroubi M et al. Characterization of endocytosis of transferrincoated PLGA nanoparticles by the blood-brain barrier. Int J Pharm 2009; 379: 285-292
  • 29 Zhang J, Wu L, Chan H-K et al. Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 2011; 63: 441-455
  • 30 Delaittre G, Dire C, Rieger J. Formation of polymer vesicles by simultaneous chain growth and self-assembly of amphiphilic block copoly-mers. Chem Commun 2009; 45: 2887-2889
  • 31 Dong Y, Feng S. Methoxy poly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanopartiocles for controlled drug delivery of anticancer drugs. Biomaterials 2004; 25: 2843-2849
  • 32 Zhang X, Li Y, Chen X. Synthesis and characterization of the paclitaxel/MPEG-PLA block copolymer conjugate. Biomaterials 2005; 26: 2121-2128
  • 33 Geckeler KE, Nishide H. editors. Advanced nanomaterials. Weinheim, Germany: Wiley-VCH Publishers; 2010
  • 34 Landfester K. Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 2009; 48: 4488-4507
  • 35 Edlund U, Albertsson AC. Polyesters based on diacid monomers. Advanced Drug Delivery Reviews 2003; 55: 585-609
  • 36 Kricheldorf HR. Syntheses and application of polylactides. Chemosphere 2001; 43: 49-54
  • 37 Qian H, Bei J, Wang S. Synthesis, characterization and degradation of ABA block copolymer of -lactide and -caprolactone. Polymer Degradation and Stability 2000; 68: 423-429
  • 38 Anton N, Benoit JP, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates – a review. J Control Release 2008; 128: 185-990
  • 39 Zili Z, Sfar S, Fessi H. Preparation and characterization of poly-_-caprolactone nanoparticles containing griseofulvin. Int J Pharm 2005; 294: 261-267
  • 40 Miyajima M, Koshika A, Okada J et al. Effect of polymer crystallinity on papaverine release from poly (-lactic acid) matrix. Journal of Controlled Release 1997; 49: 207-215
  • 41 Xu Z, Gu W, Huang J et al. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. International Journal of Pharmaceutics 2005; 288: 361-368
  • 42 Fontana G, Licciardi M, Mansueto S et al. Amoxicillin-loaded polyethylcyanoacrylate nanoparticles: Influenece of PEG coating on the particle size, drug release rate and phagocytic uptake. Biomaterials 2001; 22: 2857-2865
  • 43 Gibaud S, Rousseau C, Weingarten C et al. Polyalkylcyanoacrylate nanoparticles as carriers for granulocytecolony stimulating factor (G-CSF). Journal of Controlled Release 1998; 52: 131-139
  • 44 Behan N, Birkinshaw C, Clarke N. Poly n-butyl cyanoacrylate nanoparticles: a mechanistic study of polymerisation and particle formation. Biomaterials 2001; 22: 1335-1344
  • 45 Fontana G, Pitarresi G, Tomarchio V et al. Preparation, characterization and in vitro antimicrobial activity of ampicillinloadedpolyethylcyanoacrylate nanoparticles. Biomaterials 1998; 19: 1009-1017
  • 46 Kreuter J. Nanoparticulate systems for brain delivery of drugs. Advanced Drug Delivery 2001; 47: 65-81
  • 47 Sham JO, Zhang Y, Finlay WH et al. Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. International Journal of Pharmaceutics 2004; 269: 457-467
  • 48 Dong Y, Feng S. Methoxypoly(ethylene glycol)-poly(lactide) (MPEG-PLA) nanopartiocles for controlled drug delivery of anticancer drugs. Biomaterials 2004; 25: 28432849
  • 49 Gref R, Luck M, Quellec P et al. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influeneces of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces 2000; 18: 301-313
  • 50 Danafar H, Rostamizadeh K, Davaran S et al. Biodegradable m- PEG/PCL Core – Shell Micelles: Preparation and Characterization as a Sustained Release Formulation for Curcumin. Advanced Pharmaceutical Bulletin 2014; 4 (Suppl. 02) 501-510
  • 51 Li Y-P, Pei Y-Y, Zhang X-Y et al. PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. Journal of controlled release 2001; 71: 203-211
  • 52 Tobio M, Sanchez A, Vila A et al. The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids and Surfaces B: Biointerfaces 2000; 18: 315-323
  • 53 Croy SR, Kwon GS. Polymeric micelles for drug delivery. Curr Pharm Des 2006; 12: 4669-4684
  • 54 Kim D, Lee ES, Oh KT et al. Doxorubicin-loaded polymeric micelle overcomes multidrug resistance of cancer by double-targeting folate receptor and early endosomal pH. Small 2008; 4: 2043-2050
  • 55 Zhao H, Yung LYL. Selectivity of folate conjugated polymer micelles against different tumor cells. Int J Pharm 2008; 349: 256-268
  • 56 Wittemann A, Azzam T, Eisenberg A. Langmuir 2007; 23: 2224
  • 57 Nystrom AM, Bartels JW, Du W et al. Perfluorocarbon-loaded Shell Crosslinked Knedel-like Nanoparticles: Lessons regarding polymer mobility and self assembly. J PolymSci A PolymChem 2009; 47: 1023-1037
  • 58 Song Z, Feng R, Sun M et al. Curcumin-loaded PLGA-PEG-PLGA triblock copolymeric micelles: preparation, pharmacokinetics and distribution in vivo. J Colloid Interface Sci 2011; 354: 116-123
  • 59 Danafar H, Rostamizadeh K, Davaran S et al. Drug-conjugated PLA–PEG–PLA copolymers: a novel approach for controlled delivery of hydrophilic drugs by micelle formation. Pharm Dev Technol 2016 Jan 6: 1-11 [Epub ahead of print]
  • 60 Li Y, Du J, Armes SP. Shell cross-linked micelles as cationic templates for the preparation of silica-coated nanoparticles: strategies for controlling the mean particle diameter. Macromol Rapid Commun 2009; 30: 464-468
  • 61 Zhang K, Fang H, Wang Z et al. Cationic shell-crosslinked knedel-like nanoparticles for highly efficient gene and oligonucleotide transfection of mammalian cells. Biomaterials 2009; 30: 968-977
  • 62 Harrisson S, Wooley KL. Shell-crosslinked nanostructures from amphiphilic AB and ABA block copolymers of styrene-alt-(maleic anhydride) and styrene: polymerization, assembly and stabilization in one pot. ChemCommun (Camb) 2005; 3259-3261
  • 63 Qiao M, Chen D, Ma X et al. Injectable biodegradable temperature-responsive PLGA-PEG-PLGA copolymers: synthesis and effect of copolymer composition on the drug release from the copolymer-based hydrogels. Int J Pharm 2005; 294: 103-112
  • 64 Zhang Z, Lee SH, Gan CW et al. In vitro and in vivo investigation on PLA-TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res 2008; 25: 1925-1935
  • 65 Upadhyay KK, Agrawal HG, Upadhyay C et al. Role of block copolymer nanoconstructs in cancer therapy. Crit Rev Ther Drug Carrier Syst 2009; 26: 157-205
  • 66 Ahmed F, Pakunlu RI, Brannan A et al. J Controlled Release 2006; 116: 150
  • 67 Roques C, Fromes Y, Fattal E. Hydrosoluble polymers for muscular gene delivery. Eur J Pharm Biopharm 2009; 72: 378-390
  • 68 Aliabadi HM, Shahin M, Brocks DR et al. Disposition of drugs in block copolymer micelle delivery systems: from discovery to recovery. ClinPharmacokinet 2008; 47: 619-634
  • 69 Danafar H, Hamidi M. Simple and sensitive high-performance liquid chromatography (HPLC) method with UV detection for mycophenolic acid assay in human plasma. Application to a bioequivalence study. Adv Pharm Bull 2015; 5: 563-568
  • 70 Meng F, Engbers GH, Feijen J. Biodegradable polymersomes as a basis for artificial cells: encapsulation, release and targeting. J Control Release 2005; 101: 187-198
  • 71 Ahmed F, Pakunlu RI, Brannan A et al. Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 2006; 116: 150-158
  • 72 Lee JS, Feijen J. Polymersomes for drug delivery: design, formation and characterization. J Control Release 2012; 161: 473-483
  • 73 Meng F, Zhong Z, Feijen J. Stimuli-responsive polymersomes for programmed drug delivery. Biomacromolecules 2009; 10: 197-209
  • 74 Lee JS, Ankone M, Pieters E et al. Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface charge in tumor-bearing mice: comparison with stealth liposomes. J Control Release 2011; 155: 282-288
  • 75 Li S, Byrne B, Welsh J et al. Biotechnol Progr 2007; 23: 278
  • 76 Chen W, Meng FH, Cheng R et al. pH-sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release 2010; 142: 40-46
  • 77 Ganta S, Deshpande D, Korde A et al. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol 2010; 27: 260-273
  • 78 Zheng C, Qiu L, Zhu K. Novel polymersomes based on amphiphilic graft polyphosphazenes and their encapsulation of water-soluble anti-cancer drug. Polymer 2009; 50: 1173-1177
  • 79 Rameez S, Alosta H, Palmer AF. Bioconjugate. Chem 2008; 19: 1025
  • 80 Christian DA, Cai S, Bowen DM et al. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur J Pharm Biopharm 2009; 71: 463-474
  • 81 He C, Kim SW, Lee DS. In situ gelling stimuli-sensitive block copolymer hydrogels for drug delivery. J Control Release 2008; 127: 189-207
  • 82 Photos PJ, Bacakova L, Discher B et al. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release 2003; 90: 323-334
  • 83 Dehousse V, Garbacki N, Colige A et al. Development of pH-responsive nanocarriers using trimethylchitosans and methacrylic acid copolymer for siRNA delivery. Biomaterials 2010; 31: 1839-1849
  • 84 Peppas NA, Wood KM, Blanchette JO. Hydrogels for oral delivery of therapeutic proteins. Expert OpinBiolTher 2004; 4: 881-887
  • 85 Chearuil FN, Corrigan OI. Thermosensitivity and release from poly N-isopropylacrylamide-polylactide copolymers. Int J Pharm 2009; 366: 21-30
  • 86 Jeong B, Bae YH, Kim SW. Drug release from biodegradable injectable thermosensitive hydrogel of PEG-PLGA-PEG triblock copolymers. J Control Release 2000; 63: 155-163
  • 87 Kheiri H, Sharafi A, Danafar H et al. Poly (caprolactone)-poly (ethylene glycol) – Poly (caprolactone) (PCL-PEG-PCL) Nanoparticles: A valuable and EfficientSystem forin vitro andin-vivo Delivery of Curcumin. RSCAdv 2016; 6: 14403-14415
  • 88 Danafar H, Kheiri H, Sharafi A. Sulforaphane delivery using mPEG- PCL co-polymer nanoparticles to breast cancer cells. Pharm Dev Technol 2016; ID: 1146296 DOI: 10.3109/10837450.2016.1146296.
  • 89 Musyanovych A, Schmitz-Wienke J, Mailander V et al. Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol Biosci 2008; 8: 127-139
  • 90 Bilati U, Allemann E, Doelker E. Sonication parameters for the preparation of biodegradable nanocapsules of controlled size by the double emulsion method. Pharm Dev Technol 2003; 8: 1-9
  • 91 Ganachaud F, Katz JL. Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. Chem Phys Chem 2005; 6: 209-216
  • 92 Galindo-Rodriguez SA, Puel F, Briancon S et al. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur J Pharm Sci 2005; 25: 357-367
  • 93 Zweers MLT, Engbers GHM, Grijpma DW et al. Release of anti-restenosis drugs from poly(ethylene oxide)-poly(dl-lactic-coglycolic acid) nanoparticles. J Control Release 2006; 114: 317-324
  • 94 Moinard-Chécot D, Chevalier Y, Briancon S et al. Mechanism of nanocapsules formation by the emulsion-diffusion process. J Colloid Interface Sci 2008; 317: 458-468
  • 95 Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: NBM 2010; 6: 9-24
  • 96 Dalpiaz A, Vighi E, Pavan B et al. Fabrication via a nonaqueous nanoprecipitation method, characterization and in vitro biological behavior of N6-cyclopentyladenosine-loaded nanoparticles. J Pharm Sci 2009; 98: 4272-4284
  • 97 Kostog M, Kohler S, Liebert T et al. Pure cellulose nanoparticles from trimethylsilyl cellulose. Macromol Symp 2010; 294: 96-106
  • 98 Zhang Z, Lee SH, Gan CW et al. In vitro and in vivo investigation on PLA–TPGS nanoparticles for controlled and sustained small molecule chemotherapy. Pharm Res 2008; 25: 1925-1935
  • 99 Faheem AS, Nasser AMB, Muzafar AK et al. Novel self-assembled amphiphilic poly(_-caprolactone)- grafted poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci Mater Med 2009; 20: 821-831
  • 100 Errico C, Bartoli C, Chiellini F et al. Poly(hydroxyalkanoates)- based polymeric nanoparticles for drug delivery. J Biomed Biotechnol 2009; 2009: 571702