Planta Med 2016; 82(13): 1153-1162
DOI: 10.1055/s-0042-108450
Reviews
Georg Thieme Verlag KG Stuttgart · New York

MicroRNAs as New Bioactive Components in Medicinal Plants

Wenyan Xie
Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
,
Alexander Weng
Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
,
Matthias F. Melzig
Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
› Author Affiliations
Further Information

Publication History

received 05 March 2016
revised 22 April 2016

accepted 30 April 2016

Publication Date:
07 June 2016 (online)

Abstract

Herbal medicine has been used to treat diseases for centuries; however, the biological active components and the mechanistic understanding of actions of plant-derived drugs are permanently discussed. MicroRNAs are a class of small, non-coding RNAs that play crucial roles as regulators of gene expression. In recent years, an increasing number of reports showed that microRNAs not only execute biological functions within their original system, they can also be transmited from one species to another, inducing a posttranscriptional repression of protein synthesis in the recipient. This cross-kingdom regulation of microRNAs provides thrilling clues that small RNAs from medicinal plants might act as new bioactive components, interacting with the mammalian system.

In this article, we provide an overview of the cross-kingdom communication of plant-derived microRNAs. We summarize the microRNAs identified in medicinal plants, their potential targets in mammals, and discuss several recent studies concerning the therapeutic applications of plant-based microRNAs. Health regulations of herbal microRNAs in mammals are a new concept. Continuing efforts in this area will broaden our understanding of biological actions of herbal remedies, and will open the way for the development of new approaches to prevent or treat human diseases.

Supporting Information

 
  • References

  • 1 Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T. A uniform system for microRNA annotation. RNA 2003; 9: 277-279
  • 2 Ling H, Fabbri M, Calin GA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 2013; 12: 847-865
  • 3 Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92-105
  • 4 Ranganathan K, Sivasankar V. MicroRNAs – biology and clinical applications. J Oral Maxillofac Pathol 2014; 18: 229-234
  • 5 Van Rooij E. Introduction to the series on microRNAs in the cardiovascular system. Circ Res 2012; 110: 481-482
  • 6 Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 2012; 13: 239-250
  • 7 Salta E, De Strooper B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol 2012; 11: 189-200
  • 8 Rothschild SI. MicroRNA therapies in cancer. Mol Cell Ther 2014; 2: 7
  • 9 Trang P, Wiggins JF, Daige CL, Cho C, Omotola M, Brown D, Weidhaas JB, Bader AG, Slack FJ. Systemic delivery of tumor suppressor microRNA mimics using a neutral lipid emulsion inhibits lung tumors in mice. Mol Ther 2011; 19: 1116-1122
  • 10 Garzon R, Heaphy CEA, Havelange V, Fabbri M, Volinia S, Tsao T, Zanesi N, Kornblau SM, Marcucci G, Calin GA, Andreeff M, Croce CM. MicroRNA 29b functions in acute myeloid leukemia. Blood 2009; 114: 5331-5341
  • 11 Cubillos-Ruiz JR, Baird JR, Tesone AJ, Rutkowski MR, Scarlett UK, Camposeco-Jacobs AL, Anadon-Arnillas J, Harwood NM, Korc M, Fiering SN, Sempere LF, Conejo-Garcia JR. Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res 2012; 72: 1683-1693
  • 12 Bouchie A. First microRNA mimic enters clinic. Nat Biotechnol 2013; 31: 577
  • 13 Li Z, Rana TM. Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 2014; 13: 622-638
  • 14 Van Rooij E, Kauppinen S. Development of microRNA therapeutics is coming of age. EMBO Mol Med 2014; 6: 851-864
  • 15 Zhang Z, Song C, Zhang F, Xiang L, Chen Y, Li Y, Pan J, Liu H, Xiao GG, Ju D. Rhizoma Dioscoreae extract protects against alveolar bone loss in ovariectomized rats via microRNAs regulation. Nutrients 2015; 7: 1333-1351
  • 16 Wu N, Wu G, Hu R, Li M, Feng H. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128. Acta Pharmacol Sin 2011; 32: 345-353
  • 17 Hu H, Li K, Wang X, Liu Y, Lu Z, Dong R, Guo H, Zhang M. Set9, NF-κB, and microRNA-21 mediate berberine-induced apoptosis of human multiple myeloma cells. Acta Pharmacol Sin 2013; 34: 157-166
  • 18 Zhang Y, Zhang GB, Xu XM, Zhang M, Qu D, Niu HY, Bai X, Kan L, He P. Suppression of growth of A549 lung cancer cells by waltonitone and its mechanisms of action. Oncol Rep 2012; 28: 1029-1035
  • 19 Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, Li J, Bian Z, Liang X, Cai X, Yin Y, Wang C, Zhang T, Zhu D, Zhang D, Xu J, Chen Q, Ba Y, Liu J, Wang Q, Chen J, Wang J, Wang M, Zhang Q, Zhang J, Zen K, Zhang CY. Exogenous plant MIR168 a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 2012; 22: 273-274
  • 20 Yang J, Farmer LM, Agyekum AA, Hirschi KD. Detection of dietary plant-based small RNAs in animals. Cell Res 2015; 25: 517-520
  • 21 Liang H, Zhang S, Fu Z, Wang Y, Wang N, Liu Y, Zhao C, Wu J, Hu Y, Zhang J, Chen X, Zen K, Zhang CY. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem 2015; 26: 505-512
  • 22 Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, Kong H, Zhang Q, Qi X, Hou D, Zhang L, Zhang G, Liu Y, Zhang Y, Li J, Wang J, Chen X, Wang H, Zhang J, Chen H, Zen K, Zhang CY. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res 2014; 25: 39-49
  • 23 Mlotshwa S, Pruss GJ, MacArthur JL, Endres MW, Davis C, Hofseth LJ, Peña MM, Vance V. A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res 2015; 25: 521-524
  • 24 Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, Wang SE. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 2016; 26: 217-228
  • 25 Wang K, Li H, Yuan Y, Etheridge A, Zhou Y, Huang D, Wilmes P, Galas D. The complex exogenous RNA spectra in human plasma: an interface with human gut biota?. PLoS One 2012; 7: e51009
  • 26 Liang G, Zhu Y, Sun B, Shao Y, Jing A, Wang J, Xiao Z. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr 2014; 2: 380-388
  • 27 Lukasik A, Zielenkiewicz P. In silico identification of plant miRNAs in mammalian breast milk exosomes – a small step forward?. PLoS One 2014; 9: e99963
  • 28 Snow JW, Hale AE, Isaacs SK, Baggish AL, Chan SY. Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biol 2013; 10: 1107-1116
  • 29 Witwer KW, McAlexander MA, Queen SE, Adams RJ. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol 2013; 10: 1080-1086
  • 30 Dickinson B, Zhang Y, Petrick JS, Heck G, Ivashuta S, Marshall WS. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol 2013; 31: 967-969
  • 31 Zhang Y, Wiggins BE, Lawrence C, Petrick J, Ivashuta S, Heck G. Analysis of plant-derived miRNAs in animal small RNA datasets. BMC Genomics 2012; 13: 381
  • 32 Masood M, Everett CP, Chan SY, Snow JW. Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees. RNA Biol 2016; 13: 109-118
  • 33 Yang J, Farmer LM, Agyekum AAA, Elbaz-Younes I, Hirschi KD. Detection of an abundant plant-based small RNA in healthy consumers. PLoS One 2015; 10: e0137516
  • 34 Rameshwari R, Singhal D, Narang R, Maheshwari A, Prasad TV. In silico prediction of miRNA in Curcuma longa and their role in human metabolomics. Int J Biotechnol Res 2013; 4: 253-259
  • 35 Dubey A, Kalra SS, Trivedi N. Computational prediction of miRNA in Gmelina arborea and their role in human metabolomics. Am J Biosci Bioeng 2013; 1: 62-74
  • 36 Chen X, Liang H, Zhang J, Zen K, Zhang CY. Secreted microRNAs: a new form of intercellular communication. Trends Cell Biol 2012; 22: 125-132
  • 37 Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, Zhang HG. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol Ther 2013; 21: 1345-1357
  • 38 Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB, Wang B, Zhang L, Kakar S, Jun Y, Miller D, Zhang HG. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol Nutr Food Res 2014; 58: 1561-1573
  • 39 Philip A, Ferro VA, Tate RJ. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process. Mol Nutr Food Res 2015; 59: 1962-1972
  • 40 Li J, Yang Z, Yu B, Liu J, Chen X. Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 2005; 15: 1501-1507
  • 41 Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009; 136: 669-687
  • 42 Winter J, Diederichs S. Argonaute proteins regulate microRNA stability: Increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biol 2011; 8: 1149-1157
  • 43 Nolte-ʼt Hoen EN, Van Rooij E, Bushell M, Zhang CY, Dashwood RH, James WPT, Harris C, Baltimore D. The role of microRNA in nutritional control. J Intern Med 2015; 278: 99-109
  • 44 Zhao Y, Mo B, Chen X. Mechanisms that impact microRNA stability in plants. RNA Biol 2012; 9: 1218-1223
  • 45 Wang K, Zhang S, Weber J, Baxter D, Galas DJ. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res 2010; 38: 7248-7259
  • 46 Köberle V, Pleli T, Schmithals C, Augusto Alonso E, Haupenthal J, Bönig H, Peveling-Oberhag J, Biondi RM, Zeuzem S, Kronenberger B, Waidmann O, Piiper A. Differential stability of cell-free circulating microRNAs: implications for their utilization as biomarkers. PLoS One 2013; 8: e75184
  • 47 Beltrami C, Clayton A, Newbury L, Corish P, Jenkins R, Phillips A, Fraser D, Bowen T. Stabilization of urinary microRNAs by association with exosomes and argonaute 2 protein. Non-Coding RNA 2015; 1: 151-166
  • 48 Dutta S, Basak A, Dasgupta S. Synthesis and ribonuclease A inhibition activity of resorcinol and phloroglucinol derivatives of catechin and epicatechin: Importance of hydroxyl groups. Bioorg Med Chem 2010; 18: 6538-6546
  • 49 Ghosh KS, Maiti TK, Debnath J, Dasgupta S. Inhibition of Ribonuclease A by polyphenols present in green tea. Proteins 2007; 69: 566-580
  • 50 Tai BH, Nhut ND, Nhiem NX, Tung NH, Quang TH, Thuy Luyen BT, Huong TT, Wilson J, Beutler JA, Ban NK, Cuong NM, Kim YH. Evaluation of the RNase H inhibitory properties of Vietnamese medicinal plant extracts and natural compounds. Pharm Biol 2011; 49: 1046-1051
  • 51 Dutta S, Bhattacharyya D. Enzymatic, antimicrobial and toxicity studies of the aqueous extract of Ananas comosus (pineapple) crown leaf. J Ethnopharmacol 2013; 150: 451-457
  • 52 Witwer KW. XenomiRs and miRNA homeostasis in health and disease: evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol 2012; 9: 1147-1154
  • 53 Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. Bioessays 2014; 36: 394-406
  • 54 Aouadi M, Tesz GJ, Nicoloro SM, Wang M, Chouinard M, Soto E, Ostroff GR, Czech MP. Orally delivered siRNA targeting macrophage Map4k4 suppresses systemic inflammation. Nature 2009; 458: 1180-1184
  • 55 Robbins PD, Morelli AE. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 2014; 14: 195-208
  • 56 Fabbri M. TLRs as miRNA receptors. Cancer Res 2012; 72: 6333-6337
  • 57 Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles 2014; 3: 24641
  • 58 Li C, Zhu Y, Guo X, Sun C, Luo H, Song J, Li Y, Wang L, Qian J, Chen S. Transcriptome analysis reveals ginsenosides biosynthetic genes, microRNAs and simple sequence repeats in Panax ginseng C. A. Meyer. BMC Genomics 2013; 14: 245
  • 59 Zhang L, Wu B, Zhao D, Li C, Shao F, Lu S. Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza . J Integr Plant Biol 2014; 56: 38-50
  • 60 Khaldun ABM, Huang W, Liao S, Lv H, Wang Y. Identification of microRNAs and target genes in the fruit and shoot tip of Lycium chinense: a traditional Chinese medicinal plant. PLoS One 2015; 10: e0116334
  • 61 De Paola D, Cattonaro F, Pignone D, Sonnante G. The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis. BMC Genomics 2012; 13: 41
  • 62 Li H, Dong Y, Sun Y, Zhu E, Yang J, Liu X, Xue P, Xiao Y, Yang S, Wu J, Li X. Investigation of the microRNAs in safflower seed, leaf, and petal by high-throughput sequencing. Planta 2011; 233: 611-619
  • 63 Barozai MYK, Baloch IA, Din M. Identification of MicroRNAs and their targets in Helianthus . Mol Biol Rep 2012; 39: 2523-2532
  • 64 Wu B, Wang M, Ma Y, Yuan L, Lu S. High-throughput sequencing and characterization of the small RNA transcriptome reveal features of novel and conserved microRNAs in Panax ginseng . PLoS One 2012; 7: e44385
  • 65 Jiang Q, Wang F, Tan HW, Li MY, Xu ZS, Tan GF, Xiong AS. De novo transcriptome assembly, gene annotation, marker development, and miRNA potential target genes validation under abiotic stresses in Oenanthe javanica . Mol Genet Genomics 2015; 290: 671-683
  • 66 Mishra AK, Duraisamy GS, Týcová A, Matoušek J. Computational exploration of microRNAs from expressed sequence tags of Humulus lupulus, target predictions and expression analysis. Comput Biol Chem 2015; 59: 131-141
  • 67 Fan R, Li Y, Li C, Zhang Y. Differential microRNA analysis of glandular trichomes and young leaves in Xanthium strumarium L. reveals their putative roles in regulating terpenoid biosynthesis. PLoS One 2015; 10: e0139002
  • 68 Yu ZX, Wang LJ, Zhao B, Shan CM, Zhang YH, Chen DF, Chen XY. Progressive regulation of sesquiterpene biosynthesis in Arabidopsis and Patchouli (Pogostemon cablin) by the miR156-targeted SPL transcription factors. Mol Plant 2015; 8: 98-110
  • 69 Xu X, Jiang Q, Ma X, Ying Q, Shen B, Qian Y, Song H, Wang H. Deep sequencing identifies tissue-specific microRNAs and their target genes involving in the biosynthesis of tanshinones in Salvia miltiorrhiza . PLoS One 2014; 9: e111679
  • 70 Boke H, Ozhuner E, Turktas M, Parmaksiz I, Ozcan S, Unver T. Regulation of the alkaloid biosynthesis by miRNA in opium poppy. Plant Biotechnol J 2015; 13: 409-420
  • 71 Wu B, Li Y, Yan H, Ma Y, Luo H, Yuan L, Chen S, Lu S. Comprehensive transcriptome analysis reveals novel genes involved in cardiac glycoside biosynthesis and mlncRNAs associated with secondary metabolism and stress response in Digitalis purpurea . BMC Genomics 2012; 13: 15
  • 72 Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB. Common features of microRNA target prediction tools. Front Genet 2014; 5: 23
  • 73 Ekimler S, Sahin K. Computational methods for microRNA target prediction. Genes (Basel) 2014; 5: 671-683
  • 74 Lin YL, Ma LT, Lee YR, Lin SS, Wang SY, Chang TT, Shaw JF, Li WH, Chu FH. MicroRNA-like small RNAs prediction in the development of Antrodia cinnamomea . PLoS One 2015; 10: e0123245
  • 75 Prakash P, Rajakani R, Gupta V. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets. Comput Biol Chem 2015; 61: 62-74
  • 76 Prakash P, Ghosliya D, Gupta V. Identification of conserved and novel microRNAs in Catharanthus roseus by deep sequencing and computational prediction of their potential targets. Gene 2015; 554: 181-195
  • 77 Dong M, Yang D, Lang Q, Zhou W, Xu S, Xu T. Microarray and degradome sequencing reveal microRNA differential expression profiles and their targets in Pinellia pedatisecta . PLoS One 2013; 8: e75978
  • 78 Wang B, Dong M, Chen W, Liu X, Feng R, Xu T. Microarray identification of conserved microRNAs in Pinellia pedatisecta . Gene 2012; 498: 36-40
  • 79 Wei R, Qiu D, Wilson IW, Zhao H, Lu S, Miao J, Feng S, Bai L, Wu Q, Tu D, Ma X, Tang Q. Identification of novel and conserved microRNAs in Panax notoginseng roots by high-throughput sequencing. BMC Genomics 2015; 16: 835
  • 80 Mandhan V, Kaur J, Singh K. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni. BMC Plant Biol 2012; 12: 197
  • 81 Pani A, Mahapatra RK, Behera N, Naik PK. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets. Genomics Proteomics Bioinformatics 2011; 9: 200-210
  • 82 Sahu S, Khushwaha A, Dixit R. Computational identification of miRNAs in medicinal plant Senecio vulgaris (Groundsel). Bioinformation 2011; 7: 375-378
  • 83 Johansson E, Prade T, Angelidaki I, Svensson SE, Newson WR, Gunnarsson IB, Hovmalm HP. Economically viable components from Jerusalem artichoke (Helianthus tuberosus L.) in a biorefinery concept. Int J Mol Sci 2015; 16: 8997-9016
  • 84 Das A, Das P, Kalita MC, Mondal TK. Computational identification, target prediction, and validation of conserved miRNAs in insulin plant (Costus pictus D. Don). Appl Biochem Biotechnol 2016; 178: 513-526
  • 85 Li X, Hou Y, Zhang L, Zhang W, Quan C, Cui Y, Bian S. Computational identification of conserved microRNAs and their targets from expression sequence tags of blueberry (Vaccinium corybosum). Plant Signal Behav 2014; 9: e29462
  • 86 Xu W, Cui Q, Li F, Liu A. Transcriptome-wide identification and characterization of microRNAs from castor bean (Ricinus communis L.). PLoS One 2013; 8: e69995
  • 87 Galla G, Volpato M, Sharbel TF, Barcaccia G. Computational identification of conserved microRNAs and their putative targets in the Hypericum perforatum L. flower transcriptome. Plant Reprod 2013; 26: 209-229
  • 88 Singh N, Sharma A. In-silico identification of miRNAs and their regulating target functions in Ocimum basilicum . Gene 2014; 552: 277-282
  • 89 Legrand S, Valot N, Nicolé F, Moja S, Baudino S, Jullien F, Magnard JL, Caissard JC, Legendre L. One-step identification of conserved miRNAs, their targets, potential transcription factors and effector genes of complete secondary metabolism pathways after 454 pyrosequencing of calyx cDNAs from the labiate Salvia sclarea L. Gene 2010; 450: 55-62
  • 90 Barvkar VT, Pardeshi VC, Kale SM, Qiu S, Rollins M, Datla R, Gupta VS, Kadoo NY. Genome-wide identification and characterization of microRNA genes and their targets in flax (Linum usitatissimum): Characterization of flax miRNA genes. Planta 2013; 237: 1149-1161
  • 91 Meng Y, Yu D, Xue J, Lu J, Feng S, Shen C, Wang H. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci Rep 2016; 6: 18864
  • 92 Akter A, Islam MM, Mondal SI, Mahmud Z, Jewel NA, Ferdous S, Amin MR, Rahman MM. Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi J Biol Sci 2014; 21: 3-12
  • 93 Vashisht I, Mishra P, Pal T, Chanumolu S, Singh TR, Chauhan RS. Mining NGS transcriptomes for miRNAs and dissecting their role in regulating growth, development, and secondary metabolites production in different organs of a medicinal herb, Picrorhiza kurroa . Planta 2015; 241: 1255-1268
  • 94 Yang Y, Chen X, Chen J, Xu H, Li J, Zhang Z. Differential miRNA expression in Rehmannia glutinosa plants subjected to continuous cropping. BMC Plant Biol 2011; 11: 53
  • 95 Hao DC, Yang L, Xiao PG, Liu M. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Physiol Plant 2012; 146: 388-403
  • 96 Prabu GR, Mandal AKA. Computational identification of miRNAs and their target genes from expressed sequence tags of tea (Camellia sinensis). Genomics Proteomics Bioinformatics 2010; 8: 113-121
  • 97 Gao ZH, Wei JH, Yang Y, Zhang Z, Xiong HY, Zhao WT. Identification of conserved and novel microRNAs in Aquilaria sinensis based on small RNA sequencing and transcriptome sequence data. Gene 2012; 505: 167-175
  • 98 Wang C, Wang X, Kibet NK, Song C, Zhang C, Li X, Han J, Fang J. Deep sequencing of grapevine flower and berry short RNA library for discovery of novel microRNAs and validation of precise sequences of grapevine microRNAs deposited in miRBase. Physiol Plant 2011; 143: 64-81
  • 99 Singh N, Srivastava S, Sharma A. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach. Gene 2016; 575: 570-576
  • 100 Zhang Q, Li J, Sang Y, Xing S, Wu Q, Liu X. Identification and characterization of microRNAs in Ginkgo biloba var. epiphylla Mak. PLoS One 2015; 10: e0127184
  • 101 Zhao D, Gong S, Hao Z, Tao J. Identification of miRNAs responsive to Botrytis cinerea in herbaceous peony (Paeonia lactiflora Pall.) by high-throughput sequencing. Genes (Basel) 2015; 6: 918-934
  • 102 Thirugnanasambantham K, Saravanan S, Karikalan K, Bharanidharan R, Lalitha P, Ilango S, Hairullslam VI. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis. Comput Biol Chem 2015; 58: 25-39
  • 103 Pan L, Wang X, Jin J, Yu X, Hu J. Bioinformatic identification and expression analysis of Nelumbo nucifera microRNA and their targets. Appl Plant Sci 2015; 3: 1500046