Planta Med 2016; 82(11/12): 992-999
DOI: 10.1055/s-0042-107675
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Pregnane Glycosides from Cynanchum marnierianum Stimulate GLP-1 Secretion in STC-1 Cells[*]

Michail Tsoukalas
1   Laboratory of Pharmacognosy and Bioactive Natural Products, UMR 7200, University of Strasbourg, Illkirch Graffenstaden, France
,
Christian D. Muller
1   Laboratory of Pharmacognosy and Bioactive Natural Products, UMR 7200, University of Strasbourg, Illkirch Graffenstaden, France
2   CAMBA, UMR 7178, Institut Pluridisciplinaire Hubert Curien, University of Strasbourg, Illkirch Graffenstaden, France
,
Annelise Lobstein
1   Laboratory of Pharmacognosy and Bioactive Natural Products, UMR 7200, University of Strasbourg, Illkirch Graffenstaden, France
,
Aurélie Urbain
1   Laboratory of Pharmacognosy and Bioactive Natural Products, UMR 7200, University of Strasbourg, Illkirch Graffenstaden, France
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 26. Februar 2016
revised 15. April 2016

accepted 17. April 2016

Publikationsdatum:
25. Mai 2016 (online)

Abstract

In the framework of the search for natural glucagon-like peptide-1 secretagogues, the bioassay-guided fractionation of the ethanolic extract from Cynanchum marnierianum led to the isolation of two new pregnane glycosides named marnieranosides A (1) and B (2). The structures were determined based on spectroscopic data and were established as 12β,20 S-O-dibenzoyl-pregn-6-en-5α,8β,14β,17β-tetraol-3-O-β-D-oleandropyranosyl-(1 → 4)-β-D-cymaropyranoside (1) and 12β,20R-O-dibenzoyl-pregn-6-en-5α,8β,14β-triol-3-O-β-D-oleandropyranosyl-(1 → 4)-β-D-canaropyranosyl-(1 → 4)-β-D-cymaropyranoside (2). They present structural analogies to pregnanes previously described in species known for their appetite suppressant and antihyperglycemic effects, such as P57 from Hoodia gordonii. Lupeol (3), a known dipeptidyl peptidase-4 inhibitor, and the insulinomimetic kaempferol-3-O-neohesperidoside (4) were also identified in C. marnierianum. In an in vitro assay on secretin tumor cell line-1 cells, compounds 1, 2, and P57 were found to stimulate the secretion of GLP-1 by 130 % (all tested at 100 µM). These results suggest that C. marnierianum could be of great interest in the treatment of type 2 diabetes, and that pregnane derivatives should be partly responsible via the stimulation of glucagon-like peptide-1 secretion.

* Dedicated to Professor Dr. Dr. h. c. mult. Kurt Hostettmann in recognition of his outstanding contribution to natural product research.


 
  • References

  • 1 Schwanstecher M. Diabetes: perspectives in drug therapy. Berlin: Springer; 2011
  • 2 Pabreja K, Mohd MA, Koole C, Wootten D, Furness SGB. Molecular mechanisms underlying physiological and receptor pleiotropic effects mediated by GLP-1R activation. Br J Pharmacol 2014; 171: 1114-1128
  • 3 Vilsbøll T, Krarup T, Deacon CF, Madsbad S, Holst JJ. Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 2001; 50: 609-613
  • 4 Yu Y, Liu L, Wang X, Liu X, Liu X, Xie L, Wang G. Modulation of glucagon-like peptide-1 release by berberine: in vivo and in vitro studies. Biochem Pharmacol 2010; 79: 1000-1006
  • 5 Rafferty EP, Wylie AR, Elliott CT, Chevallier OP, Grieve DJ, Green BD. In vitro and in vivo effects of natural putative secretagogues of glucagon-like peptide-1 (GLP-1). Sci Pharm 2011; 79: 615-621
  • 6 Choi EK, Kim KS, Yang HJ, Shin MH, Suh HW, Lee KB, Ahn KS, Um JY, Lee SG, Lee BC, Jang HJ. Hexane fraction of Citrus aurantium L. stimulates glucagon-like peptide-1 (GLP-1) secretion via membrane depolarization in NCI-H716 cells. Biochip J 2012; 6: 41-47
  • 7 Vermaak I, Hamman J, Viljoen A. Hoodia gordonii: an up-to-date review of a commercially important anti-obesity plant. Planta Med 2011; 77: 1149-1160
  • 8 Rauh W. Succulent and xerophytic plants of Madagascar, Vol. 2. Mill Valley: Strawberry Press; 1998
  • 9 Schmelzer GH, Gurib-Fakim A. Plant Resources of Tropical Africa 11 (2). Medicinal plants 2. Wageningen: CTA/PROTA Foundation; 2013
  • 10 Kanchanapoom T, Kasai R, Ohtani K, Andriantsiferana M, Yamasaki K. Pregnane and pregnane glycosides from the Malagasy plant, Cynanchum aphyllum . Chem Pharm Bull (Tokyo) 2002; 50: 1031-1034
  • 11 Dal Piaz F, De Leo M, Braca A, De Simone F, Morelli I, De Tommasi N. Electrospray ionization mass spectrometry for identification and structural characterization of pregnane glycosides. Rapid Commun Mass Spectrom 2005; 19: 1041-1052
  • 12 Yoshikawa K, Matsuchika K, Arihara S, Chang HC, Wang JD. Pregnane glycosides, gymnepregosides A–F from the roots of Gymnema alternifolium . Chem Pharm Bull (Tokyo) 1998; 46: 1239-1243
  • 13 Yoshikawa K, Matsuchika K, Takahashi K, Tanaka M, Arihara S, Chang HC, Wang JD. Pregnane glygosides, gymnepregosides G–Q from the roots of Gymnema alternifolium . Chem Pharm Bull (Tokyo) 1999; 47: 798-804
  • 14 Warashina T, Noro T. Acylated-oxypregnane glycosides from the roots of Araujia sericifera . Chem Pharm Bull (Tokyo) 2003; 51: 1036-1045
  • 15 Liu S, Chen Z, Wu J, Wang L, Wang H, Zhao W. Appetite suppressing pregnane glycosides from the roots of Cynanchum auriculatum . Phytochemistry 2013; 93: 144-153
  • 16 Abdallah HM, Osman AM, Almehdar H, Abdel-Sattar E. Acylated pregnane glycosides from Caralluma quadrangula . Phytochemistry 2013; 88: 54-60
  • 17 Xu R, Yang Y, Zhang Y, Ren F, Xu J, Yu N, Zhao Y. New pregnane glycosides from Gymnema sylvestre . Molecules 2015; 20: 3050-3066
  • 18 Vleggaar R, van Heerden FR, Anderson LAP, Erasmus GL. Toxic constituents of the Asclepiadaceae. Structure elucidation of sarcovimiside A–C, pregnane glycosides of Sarcostemma viminale . J Chem Soc Perkin Trans 1 1993; 1993: 483-487
  • 19 Kimura M, Hayashi K, Narita H, Mitsuhashi H. Studies on the constituents of Asclepiadaceae plants. LI. Oxidation at the 18-methyl group of C/D-cis-pregnane type steroids and 13C-nuclear magnetic resonance spectra of 18-oxygenated pregnanes and related compounds. Chem Pharm Bull (Tokyo) 1982; 30: 3932-3941
  • 20 Al-Massarani SM, Bertrand S, Nievergelt A, El-Shafae AM, Al-Howiriny TA, Al-Musayeib NM, Cuendet M, Wolfender JL. Acylated pregnane glycosides from Caralluma sinaica . Phytochemistry 2012; 79: 129-140
  • 21 Cioffi G, Sanogo R, Vassallo A, Dal Piaz F, Autore G, Marzocco S, De Tommasi N. Pregnane glycosides from Leptadenia pyrotechnica . J Nat Prod 2006; 69: 625-635
  • 22 Kazuma K, Noda N, Suzuki M. Malonylated flavonol glycosides from the petals of Clitoria ternatea . Phytochemistry 2003; 62: 229-237
  • 23 Saleem S, Jafri L, ul Haq I, Chang LC, Calderwood D, Green BD, Mirza B. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J Ethnopharmacol 2014; 156: 26-32
  • 24 Yamasaki K, Hishiki R, Kato E, Kawabata J. Study of kaempferol glycoside as an insulin mimic reveals glycon to be the key active structure. ACS Med Chem Lett 2011; 2: 17-21
  • 25 Abdel-Sattar EA, Abdallah HM, Khedr A, Abdel-Naim AB, Shehata IA. Antihyperglycemic activity of Caralluma tuberculata in streptozotocin-induced diabetic rats. Food Chem Toxicol 2013; 59: 111-117
  • 26 Le Nevé B, Foltz M, Daniel H, Gouka R. The steroid glycoside H.g.-12 from Hoodia gordonii activates the human bitter receptor TAS2R14 and induces CCK release from HuTu-80 cells. Am J Physiol Gastrointest Liver Physiol 2010; 299: G1368-G1375