Planta Med 2016; 82(11/12): 952-960
DOI: 10.1055/s-0042-107254
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Immunmodulatory and Antiproliferative Properties of Rhodiola Species[*]

Mari-Carmen Recio
Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
,
Rosa-María Giner
Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
,
Salvador Máñez
Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 12. März 2016
revised 11. April 2016

accepted 12. April 2016

Publikationsdatum:
25. Mai 2016 (online)

Abstract

The traditional medicines of Asia and Europe have long used various Rhodiola species, which are endemic to the subarctic areas of the northern hemisphere, as tonic, adaptogen, antidepressant, and anti-inflammatory drugs. In order to establish the therapeutic uses of these plants in modern medicine, the pharmacological effects of Rhodiola sp. have been widely studied. Indeed, the most amply researched species, Rhodiola rosea, has been shown to possess antioxidant, adaptogenic, antistress, antimicrobial, immunomodulatory, angiomodulatory, and antitumoral effects. Salidroside (p-hydroxyphenethyl-β-D-glucoside), a major compound in Rhodiola, seems to be responsible for many of the effects observed with Rhodiola extracts.

The aim of this paper is to review the pharmacological effects not only of various Rhodiola species, mainly R. rosea along with Rhodiola imbricata, Rhodiola algida, and Rhodiola crenulata, but also of salidroside, focusing especially on its antioxidant, immunomodulatory, antitumoral, and antiproliferative activities, as well as to describe their therapeutic significance in disease management. Although previous pharmacological studies have established a scientific basis for possible therapeutic uses of Rhodiola extracts and salidroside, high-quality, randomized, controlled clinical trials are still needed.

* Dedicated to Professor Dr. Dr. h. c. mult. Kurt Hostettmann in recognition of his outstanding contribution to natural product research.


 
  • References

  • 1 Grech-Baran M, Sykłowska-Baranek K, Pietrosiuk A. Biotechnological approaches to enhance salidroside, rosin and its derivatives production in selected Rhodiola spp. in vitro cultures. Phytochem Rev 2015; 14: 657-674
  • 2 GBIF 2010. Biodiversity occurrence data provided by Global Biodiversity Information Facility. Available at. http://data.gbif.org Accessed March 04, 2016
  • 3 European Medicines Agency, Committee on Herbal Medicinal Products. Assessment report on Rhodiola rosea L., rhizoma et radix. EMA/HMPC/232100/2011; 27 March 2012.
  • 4 Sarwar GR, Qaiser M. Distribution pattern, ecology and endemism of family Crassulaceae in Pakistan and Kashmir. Pak J Bot 2012; 44: 2055-2061
  • 5 Zhengyi W, Raven PH. Flora of China, Vol. 8. Beijing: Science Press; and St. Louis: Missouri Botanical Garden Press; 2001: 251-268
  • 6 Radomska-Lesniewska D, Skopinski P, Balan BJ, Bialoszewska A, Józwiak J, Rokicki D, Skopinska-Rózewska E, Borecka A, Hevelke A. Angiomodulatory properties of Rhodiola spp. and other natural antioxidants. Centr Eur J Immunol 2015; 40: 249-262
  • 7 Panossian A, Wikman G, Sarris J. Rosenroot (Rhodiola rosea): traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 2010; 17: 481-493
  • 8 Cuerrier A, Ampong-Nyarko K. Rhodiola rosea . Boca Raton: CRC Press; 2015
  • 9 Panossian A, Hamm R, Kadioglu O, Wilkman G, Efferth T. Synergy antagonism of active constituents of ADAPT-232 on transcriptional level of metabolic regulation of isolated neuroglial cells. Front Neurosci 2013; 7: 1-14
  • 10 Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 2015; 74: 5-17
  • 11 Zdanowski R, Lewicki S, Skopińska-Różewska E, Buchwald W, Mrozikiewicz M, Stankiewicz W. Alcohol- and water-based extracts obtained from Rhodiola rosea affect differently the number and metabolic activity of circulating granulocytes in Balb/c mice. Ann Agric Environ Med 2014; 21: 120-123
  • 12 Lin SC, Chin LW, Chao PC, Lai YY, Lin LY, Chou MY, Chou MC, Wei JC, Yang CC. In vivo Th1 and Th2 cytokine modulation effects of Rhodiola rosea standardised solution and its major constituent, salidroside. Phytother Res 2011; 25: 1604-1611
  • 13 Hotchkiss RS, Tinsley KW, Karl IE. Role of apoptotic cell death in sepsis. Scand J Infect Dis 2003; 35: 585-592
  • 14 Liu MW, Su MX, Zhang W, Zhang LM, Wang YH, Qian CY. Rhodiola rosea suppresses thymus T-lymphocyte apoptosis by downregulating tumor necrosis factor-α-induced protein 8-like-2 in septic rats. Int J Mol Med 2015; 36: 386-398
  • 15 Xu X, Tan C, Li P, Zhang S, Pang X, Liu H, Li L, Sun X, Zhang Y, Wu H, Chen X, Ge Q. Changes of cytokines during a spaceflight analog – a 45-day head-down bed rest. PLoS One 2013; 8: e77401
  • 16 Skopińska-Rózewska E, Sokolnicka I, Siwicki AK, Stankiewicz W, Dabrowski MP, Buchwald W, Krajewska-Patan A, Mielcarek S, Mścisz A, Furmanowa M. Dose-dependent in vivo effect of Rhodiola and Echinacea on the mitogen-induced lymphocyte proliferation in mice. Pol J Vet Sci 2011; 14: 265-272
  • 17 Chiang HM, Chien YC, Wu CH, Kuo YH, Wu WC, Pan YY, Su YH, Wen KC. Hydroalcoholic extract of Rhodiola rosea L. (Crassulaceae) and its hydrolysate inhibit melanogenesis in B16F0 cells regulating the CREB/MITF/tyrosynase pathway. Food Chem Toxicol 2014; 65: 129-139
  • 18 Palumbo DR, Occhiuto F, Spadaro F, Circosta C. Rhodiola rosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phytother Res 2012; 26: 878-883
  • 19 Liu Z, Li X, Simoneau AR, Jafari M, Zi X. Rhodiola rosea extracts and salidroside decrease the growth of bladder cancer cell lines via inhibition of the mTOR pathway and induction of autophagy. Mol Carcinog 2012; 51: 257-267
  • 20 Cai Z, Li W, Wang H, Yan W, Zhou Y, Wang G, Cui J, Wang F. Antitumor effects of a purified polysaccharide from Rhodiola rosea and its action mechanism. Carbohydr Polym 2012; 90: 296-300
  • 21 Mishra KP, Ganju L, Chanda S, Karan D, Sawhney RC. Aqueous extract of Rhodiola imbricata rhizome stimulates Toll-like receptor 4, granzyme-B and Th1 cytokines in vitro . Immunobiology 2009; 214: 27-31
  • 22 Mishra KP, Ganju L, Singh SB. Anti-cellular and immunomodulatory potential of aqueous extract of Rhodiola imbricata rhizome. Immunopharmacol Immunotoxicol 2012; 34: 513-518
  • 23 Diwaker D, Mishra KP, Ganju L, Singh SB. Rhodiola inhibits dengue virus multiplication by inducing innate immune response genes RIG-I, MDA5 and ISG in human monocytes. Arch Virol 2014; 159: 1975-1986
  • 24 Senthilkumar R, Parimelazhagan T, Chaurasia OP, Srivastava RB. Free radical scavenging property and antiproliferative activity of Rhodiola imbricata Edgew extracts in HT-29 human colon cancer cells. Asian Pac J Trop Med 2013; 6: 11-19
  • 25 Chawla R, Jaiswal S, Kumar R, Arora R, Sharma RK. Himalayan bioresource Rhodiola imbricata as a promising radioprotector for nuclear and radiological emergencies. J Pharm Bioallied Sci 2010; 2: 213-219
  • 26 Zhou JT, Li CY, Wang CH, Wang YF, Wang XD, Wang HT, Zhu Y, Jiang MM, Gao XM. Phenolic compounds from the roots of Rhodiola crenulata and their antioxidant and inducing IFN-γ production activities. Molecules 2015; 20: 13725-13739
  • 27 Zhu C, Guan F, Wang C, Jin LH. The protective effects of Rhodiola crenulata extracts on Drosophila melanogaster gut immunity induced by bacteria and SDS toxicity. Phytother Res 2014; 28: 1861-1866
  • 28 Bassa LM, Jacobs C, Gregory K, Henchey E, Ser-Dolansky J, Schneider SS. Rhodiola crenulata induces an early estrogenic response and reduced proliferation and tumorsphere formation over time in MCF7 breast cancer cells. Phytomedicine 2016; 23: 87-94
  • 29 Mora MC, Bassa LM, Wong KE, Tirabasi MV, Arenas RB, Schneider SS. Rhodiola crenulata inhibits Wnt/β-catenin signaling in glioblastoma. J Surg Res 2015; 197: 247-255
  • 30 Dudek MC, Wong KE, Bassa LM, Mora MC, Ser-Dolansky J, Henneberry JM, Crisi GM, Arenas RB, Schneider SS. Antineoplastic effects of Rhodiola crenulata treatment on B16-F10 melanoma. Tumour Biol 2015; 36: 9795-9805
  • 31 Li HX, Sze SC, Tong Y, Ng TB. Production of Th1- and Th2-dependent cytokines induced by the Chinese medicine herb, Rhodiola algida, on human peripheral blood monocytes. J Ethnopharmacol 2009; 123: 257-266
  • 32 Loo WTY, Jin LJ, Chow LWC, Cheung MNB, Wang M. Rhodiola algida improves chemotherapy-induced oral mucositis in breast cancer patients. Expert Opin Investig Drugs 2010; 19: S91-S100
  • 33 Qi YJ, Cui S, Lu DX, Yang YZ, Luo Y, Ma L, Ma Y, Wuren T, Chang R, Qi L, Ben BJ, Han J, Ge RL. Effects of the aqueous extract of a Tibetan herb, Rhodiola algida var. tangutica on proliferation and HIF-1α, HIF-2α expression in MCF-7 cells under hypoxic condition in vitro . Cancer Cell Int 2015; 15: 81
  • 34 Zhang H, Shen WS, Gao CH, Deng LC, Shen D. Protective effects of salidroside on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer. Drugs R D 2012; 12: 101-106
  • 35 Shi TY, Feng SF, Xing JH, Wu YM, Li XQ, Zhang N, Tian Z, Liu SB, Zhao MG. Neuroprotective effects of Salidroside and its analogue tyrosol galactoside against focal cerebral ischemia in vivo and H2O2-induced neurotoxicity in vitro . Neurotox Res 2012; 21: 358-367
  • 36 Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, Chen JZ, Shi TY, Hu HM, Wei BY, Luo ZJ, Liu J. Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 2013; 8: e57251
  • 37 Li D, Fu Y, Zhang W, Su G, Liu B, Guo M, Li F, Liang D, Liu Z, Zhang X, Cao Y, Zhang N, Yang Z. Salidroside attenuates inflammatory responses by suppressing nuclear factor-κB and mitogen activated protein kinases activation in lipopolysaccharide-induced mastitis in mice. Inflamm Res 2013; 62: 9-15
  • 38 Guan S, He J, Guo W, Wei J, Lu J, Deng X. Adjuvant effects of salidroside from Rhodiola rosea L. on the immune responses to ovalbumin in mice. Immunopharmacol Immunotoxicol 2011; 33: 738-743
  • 39 Hu X, Lin S, Yu D, Qiu S, Zhang X, Mei R. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biol Toxicol 2010; 26: 499-507
  • 40 Liu X, Peng X, Hu Z, Zhao Q, He J, Li J, Zhong X. Effects of over-expression of ANXA10 gene on proliferation and apoptosis of hepatocellular carcinoma cell line HepG2. J Huazhong Univ Sci Technolog Med Sci 2012; 32: 669-674
  • 41 Skopińska-Rózewska E, Malinowski M, Wasiutyński A, Sommer E, Furmanowa M, Mazurkiewicz M, Siwicki AK. The influence of Rhodiola quadrifida 50 % hydro-alcoholic extract and salidroside on tumor-induced angiogenesis in mice. Pol J Vet Sci 2008; 11: 97-104
  • 42 Sun C, Wang Z, Zheng Q, Zhang H. Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells. Phytomedicine 2012; 19: 355-363
  • 43 Lu L, Yuan J, Zhang S. Rejuvenating activity of salidroside (SDS): dietary intake of SDS enhances the immune response of aged rats. Age (Dordr) 2013; 35: 637-646
  • 44 Zhao X, Lu Y, Tao Y, Huang Y, Wang D, Hu Y, Liu J, Wu Y, Yu Y, Liu C. Salidroside liposome formulation enhances the activity of dendritic cells and immune responses. Int Immunopharmacol 2013; 17: 1134-1140
  • 45 Hu B, Zou Y, Liu S, Wang J, Zhu J, Li J, Bo L, Deng X. Salidroside attenuates concanavalin A-induced hepatitis via modulating cytokines secretion and lymphocyte migration in mice. Mediators Inflamm 2014; 2014: 314081
  • 46 Chen JJ, Zhang NF, Mao GX, He XB, Zhan YC, Deng HB, Song DQ, Li DD, Li ZR, Si SY, Qiu Q, Wang Z. Salidroside stimulates osteoblast differentiation through BMP signaling pathway. Food Chem Toxicol 2013; 62: 499-505
  • 47 Chen X, Zhang Q, Cheng Q, Ding F. Protective effect of salidroside against H2O2-induced cell apoptosis in primary culture of rat hippocampal neurons. Mol Cell Biochem 2009; 332: 85-93
  • 48 Yu S, Shen Y, Liu J, Ding F. Involvement of ERK1/2 pathway in neuroprotection by salidroside against hydrogen peroxide-induced apoptotic cell death. J Mol Neurosci 2010; 40: 321-331
  • 49 Li X, Ye X, Li X, Sun X, Liang Q, Tao L, Kang X, Chen J. Salidroside protects against MPP+-induced apoptosis in PC12 cells by inhibiting the NO pathway. Brain Res 2011; 1382: 9-18
  • 50 Zhang L, Ding W, Sun H, Zhou Q, Huang J, Li X, Xie Y, Chen J. Salidroside protects PC12 cells from MPP+-induced apoptosis via activation of the PI3K/Akt pathway. Food Chem Toxicol 2012; 50: 2591-2597
  • 51 Xu MC, Gao XF, Ruan C, Ge ZR, Lu JD, Zhang JJ, Zhang Y, Wang L, Shi HM. miR-103 Regulates oxidative stress by targeting the Bcl2/adenovirus E1B 19kDa interacting protein 3 in HUVECs. Oxid Med Cell Longev 2015; 2015: 489647
  • 52 Tan CB, Gao M, Xu WR, Yang XY, Zhu XM, Du GH. Protective effects of salidroside on endothelial cell apoptosis induced by cobalt chloride. Biol Pharm Bull 2009; 32: 1359-1363
  • 53 Hu X, Lin S, Yu D, Qiu S, Zhang X, Mei R. A preliminary study: the anti-proliferation effect of salidroside on different human cancer cell lines. Cell Biol Toxicol 2010; 26: 499-507
  • 54 Zhao G, Shi A, Fan Z, Du Y. Salidroside inhibits the growth of human breast cancer in vitro and in vivo . Oncol Rep 2015; 33: 2553-2560
  • 55 Sun C, Wang Z, Zheng Q, Zhang H. Salidroside inhibits migration and invasion of human fibrosarcoma HT1080 cells. Phytomedicine 2012; 19: 355-363
  • 56 Wang J, Li JZ, Lu AX, Zhang KF, Li BJ. Anticancer effect of salidroside on A459 lung cancer cells through inhibition of oxidative stress and phosphor-p38 expression. Oncol Lett 2014; 7: 1159-1164
  • 57 Zhang Y, Yao Y, Wang H, Guo Y, Zhang H, Chen L. Effects of salidroside on glioma formation and growth inhibition together with improvement of tumor microenvironment. Chin J Cancer Res 2013; 25: 520-526
  • 58 Sun KX, Xia HW, Xia RL. Anticancer effect of salidroside on colon cancer through inhibiting JAK2/STAT3 signaling pathway. Int J Clin Exp Pathol 2015; 8: 615-621
  • 59 Li YR, Cao W, Guo J, Miao S, Ding GR, Li KC, Wang J, Guo GZ. Comparative investigations on the protective effects of rhodioside, ciwujianoside-B and astragaloside IV on radiation injuries of the hematopoietic system in mice. Phytother Res 2011; 25: 644-653
  • 60 Li X, Sipple J, Pang Q, Du W. Salidroside stimulates DNA repair enzyme Parp-1 activity in mouse HSC maintenance. Blood 2012; 119: 4162-4173
  • 61 Li Q, Zhou XD, Kolosov VP, Perelman JM. Salidroside reduces cold-induced mucin production by inhibiting TRPM8 activation. Int J Mol Med 2013; 32: 637-646
  • 62 Yin D, Yao W, Chen S, Hu R, Gao X. Salidroside, the main active compound of Rhodiola plants, inhibits high glucose-induced mesangial cell proliferation. Planta Med 2009; 75: 1191-1195