Planta Med 2016; 82(08): 671-689
DOI: 10.1055/s-0042-104800
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Application of MALDI Mass Spectrometry in Natural Products Analysis

Ricardo Silva
1   Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
Norberto Peporine Lopes
1   Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
,
Denise Brentan Silva
1   Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
2   Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
› Author Affiliations
Further Information

Publication History

received 03 May 2015
revised 01 March 2016

accepted 02 March 2016

Publication Date:
28 April 2016 (online)

Abstract

This article presents the utility of mass spectrometry with a MALDI ionization source in natural products analysis. The advantages and drawbacks of this technique for natural products analyses will be presented and discussed. In addition, the structural determination of secondary metabolites using MALDI-MS/MS will be explored, which can guide MALDI experimental methods and stimulate new research in this area. Finally, several important approaches for MALDI data processing will be discussed.

 
  • References

  • 1 Gohlke RS, McLafferty FW. Early gas chromatography/mass spectrometry. J Am Soc Mass Spectrom 1993; 4: 367-371
  • 2 Karas M, Bachmann D, Bahr U, Hillenkamp F. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Process 1987; 78: 53-68
  • 3 Karas M, Krüger R. Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 2003; 103: 427-439
  • 4 Guaratini T, Vessecchi RL, Lavarda FC, Maia Campos PM, Naal Z, Gates PJ, Lopes NP. New chemical evidence for the ability to generate radical molecular ions of polyenes from ESI and HR-MALDI mass spectrometry. Analyst 2004; 129: 1223-1226
  • 5 Crotti AEM, Vessecchi R, Lopes JLC, Lopes NP. Espectrometria de massas com ionização por “electrospray”: processos químicos envolvidos na formação de íons de substâncias orgânicas de baixo peso molecular. Quim Nova 2006; 29: 287-292
  • 6 Ernst M, Silva DB, Silva RR, Vêncio RZN, Lopes NP. Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 2014; 31: 784-806
  • 7 Dorrestein PC. Editorial: Mass spectrometry of small molecules and natural products. Nat Prod Rep 2014; 31: 704-705
  • 8 Bhardwaj C, Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep 2014; 31: 756-767
  • 9 Bjarnholt N, Li B, DʼAlvise J, Janfelt C. Mass spectrometry imaging of plant metabolites – principles and possibilities. Nat Prod Rep 2014; 31: 818-837
  • 10 Shih CJ, Chen PY, Liaw CC, Lai YM, Yang YL. Bringing microbial interactions to light using imaging mass spectrometry. Nat Prod Rep 2014; 31: 739-755
  • 11 Zenobi R, Knochenmuss R. Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 1998; 17: 337-366
  • 12 Knochenmuss R, Zenobi R. MALDI ionization: the role of in-plume processes. Chem Rev 2003; 103: 441-452
  • 13 Dreisewerd K. The desorption process in MALDI. Chem Rev 2003; 103: 395-426
  • 14 Holle A, Haase A, Kayser M, Hohndorf J. Optimizing UV laser focus profiles for improved MALDI performance. J Mass Spectrom 2006; 41: 705-716
  • 15 OʼConnor PB. The development of matrix-assisted laser desorption/ionization sources. In: Cole RB, editor Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Hoboken: John Wiley & Sons; 2010: 185-213
  • 16 Bier ME. Coupling ESI and MALDI sources to the quadrupole mass filter, quarupole ion trap, linear quadrupole ion trap, and orbitrap analyzers. In: Cole RB, editor Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Hoboken: John Wiley & Sons; 2010: 265-344
  • 17 El-Aneed A, Cohen A, Banoub J. Mass spectrometry, review of the basics: electrospray, MALDI, and commonly used mass analyzers. Appl Spectrosc Rev 2009; 44: 210-230
  • 18 Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP. Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 2004; 129: 984-994
  • 19 Kanu AB, Dwivedi P, Tam M, Matz L, Hill jr. HH. Ion mobility-mass spectrometry. J Mass Spectrom 2008; 43: 1-22
  • 20 Hossain M, Limbach PA. A comparison of MALDI matrices. In: Cole RB, editor Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Hoboken: John Wiley & Sons; 2010: 215-261
  • 21 Gabelica V, Schulz E, Karas M. Internal energy build-up in matrix-assisted desorption/ionization. J Mass Spectrom 2004; 39: 579-593
  • 22 Silva DB, Lopes NP. MALDI-MS of flavonoids: a systematic investigation of ionization and in-source dissociation mechanisms. J Mass Spectrom 2015; 50: 182-190
  • 23 Kaufmann R, Wingerath T, Kirsch D, Stahl W, Sies H. Analysis of carotenoids and carotenol fatty acid esters by matrix-assisted laser desorption ionization (MALDI) and MALDI post-source-decay mass spectrometry. Anal Biochem 1996; 238: 117-128
  • 24 Dong X, Cheng J, Li J, Wang Y. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal Chem 2010; 82: 6208-6214
  • 25 Liu Y, Liu J, Yin P, Gao M, Deng C, Zhang X. High throughput identification of components from traditional Chinese medicine herbs by utilizing graphene or graphene oxide as MALDI-TOF-MS matrix. J Mass Spectrom 2011; 46: 804-815
  • 26 Cohen LH, Gusev AI. Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 2002; 373: 571-586
  • 27 Ernst M, Silva DB, Silva R, Monge M, Semir J, Vêncio RZN, Lopes NP. A metabolomic protocol for plant systematics by matrix-assisted laser-desorption/ionization time-of flight mass spectrometry. Anal Chim Acta 2015; 859: 46-58
  • 28 McCombie G, Knochenmuss R. Small-molecule MALDI using the matrix suppression effect to reduce or eliminate matrix background interferences. Anal Chem 2004; 76: 4990-4997
  • 29 Liu R, Liu JF, Yin YG, Hu XL, Jiang GB. Ionic liquids in sample preparation. Anal Bioanal Chem 2009; 393: 871-883
  • 30 Vorm O, Roepstorff P, Mann M. Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal Chem 1994; 66: 3281-3287
  • 31 Gobey J, Cole M, Janiszewski J, Covey T, Chau T, Kovarik P, Corr J. Characterization and performance of MALDI on a triple quadrupole mass spectrometer for analysis and quantification of small molecules. Anal Chem 2005; 77: 5643-5654
  • 32 Dai Y, Whittal RM, Li L. Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal Chem 1999; 71: 1087-1091
  • 33 Cheng ZH, Guo YL, Wang HY, Chen GQ. Qualitative and quantitative analysis of quaternary ammonium alkaloids from Rhizoma Corydalis by matrix-assisted laser desorption/ionization Fourier transform mass spectrometry coupled with a selective precipitation reaction using Reinecke salt. Anal Chim Acta 2006; 555: 269-277
  • 34 Abell DC, Sporns P. Rapid quantitation of potato glycoalkaloids by matrix-assisted laser desorption/ionization time-of-fight mass spectrometry. J Agric Food Chem 1996; 44: 2292-2296
  • 35 Shrivas K, Patel DK. Quantitative determination of nicotinic acid in micro liter volume of urine sample by drop-to-drop solvent microextraction coupled to matrix assisted laser desorption/ionization mass spectrometry. Spectrochim Acta A Mol Biomol Spectrosc 2011; 78: 253-257
  • 36 Wang J, Kalt W, Sporns P. Comparison between HPLC and MALDI-TOF MS analysis of anthocyanins in highbush Blueberries. J Agric Food Chem 2000; 48: 3330-3335
  • 37 Wang J, Sporns P. Analysis of anthocyanins in red wine and fruit juice using MALDI-MS. J Agric Food Chem 1999; 47: 2009-2015
  • 38 Marczak L, Kachlicki P, Kozniewski P, Skirycz A, Krajewski P, Stobiecki M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry monitoring of anthocyanins in extracts from Arabidopsis thaliana leaves. Rapid Commun Mass Spectrom 2008; 22: 3949-3956
  • 39 Frison-Norrie S, Sporns P. Identification and quantification of flavonol glycosides in almond seedcoats using MALDI-TOF MS. J Agric Food Chem 2002; 50: 2782-2787
  • 40 Champy P, Melot A, Guérineau Eng V, Gleye C, Fall D, Höglinger GU, Ruberg M, Lannuzel A, Laprévote O, Laurens A, Hocquemiller R. Quantification of acetogenins in Annona muricata linked to atypical Parkinsonism in Guadeloupe. Mov Disord 2005; 20: 1629-1633
  • 41 Sleno L, Volmer DA. Toxin screening in phytoplankton: detection and quantitation using MALDI triple quadrupole mass spectrometry. Anal Chem 2005; 77: 1509-1517
  • 42 May LA, Tourkina E, Hoffman SR, Dix TA. Detection and quantitation of curcumin in mouse lung cell cultures by matrix-assisted laser desorption ionization time of flight mass spectrometry. Anal Biochem 2005; 337: 62-69
  • 43 Ivanova B, Spiteller M. Simultaneous quantitation of naturally occurring insecticides, acaricides, and piscicides in rapeseed oil by UV-MALDI mass spectrometry. J Food Meas Charact 2014; 8: 15-28
  • 44 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 1999–2000. Mass Spectrom Rev 2006; 25: 595-662
  • 45 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 2001–2002. Mass Spectrom Rev 2008; 27: 125-201
  • 46 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2003–2004. Mass Spectrom Rev 2009; 28: 273-361
  • 47 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for the period 2005–2006. Mass Spectrom Rev 2011; 30: 1-100
  • 48 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007–2008. Mass Spectrom Rev 2012; 31: 183-311
  • 49 Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009–2010. Mass Spectrom Rev 2015; 34: 268-422
  • 50 Chen X, Kong L, Su X, Pan C, Ye M, Zou H. Integration of ion-exchange chromatography fractionation with reversed-phase liquid chromatography-atmospheric pressure chemical ionization mass spectrometer and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for isolation and identification of compounds in Psoralea corylifolia . J Chromatogr A 2005; 1089: 87-100
  • 51 Chapagain BP, Wiesman Z. Metabolite profiling of saponins in Balanites aegyptiaca plant tissues using LC (RI)-ESI/MS and MALDI-TOF/MS. Metabolomics 2008; 4: 357-366
  • 52 Duncan MW, Roder H, Hunsucker SW. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct Genomic Proteomic 2008; 7: 355-370
  • 53 van Kampen JJA, Burgers PC, de Groot R, Luider TM. Qualitative and quantitative analysis of pharmaceutical compounds by MALDI-TOF mass spectrometry. Anal Chem 2006; 78: 5403-5411
  • 54 Dingle CT, Butler-Wu SM. MALDI-TOF mass spectrometry for microorganism identification. Clin Lab Med 2013; 33: 589-609
  • 55 Lai YH, So PK, Lo SCL, Ng EWY, Poon TCW, Yao ZP. Rapid differentiation of Panax ginseng and Panax quinquefolius by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chim Acta 2012; 753: 73-81
  • 56 Wu W, Liang Z, Zhao Z, Cai Z. Direct analysis of alkaloid profiling in plant tissue by using matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 2007; 42: 58-69
  • 57 Wang J, van der Heijden R, Spijksma G, Reijmers T, Wang M, Xu G, Hankemeier T, van der Greef J. Alkaloid profiling of the Chinese herbal medicine Fuzi by combination of matrix-assisted laser desorption ionization mass spectrometry with liquid chromatography-mass spectrometry. J Chromatogr A 2009; 1216: 2169-2178
  • 58 Wu W, Qiao C, Liang Z, Xu H, Zhao Z, Cai Z. Alkaloid profiling in crude and processed Strychnos nux-vomica seeds by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. J Pharm Biomed Anal 2007; 45: 430-436
  • 59 Zhu F, Cai YZ, Xing J, Ke J, Zhan Z, Corke H. Rapid identification of gallotannins from Chinese galls by matrix-assisted laser desorption/ionization time-of-flight quadrupole ion trap mass spectrometry. Rapid Commun Mass Spectrom 2009; 23: 1678-1682
  • 60 Ng KM, Liang Z, Lu W, Tang HW, Zhao Z, Che CM, Cheng YC. In vivo analysis and spatial profiling of phytochemicals in herbal tissue by matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 2007; 79: 2745-2755
  • 61 Greene LA, Isaac I, Gray DE, Schwartz SA. Streamlining plant sample preparation: the use of high-throughput robotics to process Echinacea samples for biomarker profiling by MALDI-TOF mass spectrometry. J Biomol Tech 2007; 18: 238-244
  • 62 Musharraf SG, Ali A, Choudhary MI. Atta-ur-Rahman. Probing of metabolites in finely powdered plant material by direct laser desorption ionization mass spectrometry. J Am Soc Mass Spectrom 2014; 25: 530-537
  • 63 Catharino RR, Marques LA, Santos LS, Baptista AS, Glória EM, Calori-Domingues MA, Facco EMP, Eberlin MN. Aflatoxin screening by MALDI-TOF mass spectrometry. Anal Chem 2005; 77: 8155-8157
  • 64 Fraser PD, Enfissi EM, Goodfellow M, Eguchi T, Bramley PM. Metabolite profiling of plant carotenoids using the matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Plant J 2007; 49: 552-564
  • 65 Jerez M, Sineiro J, Guitián E, Núnez MJ. Identification of polymeric procyanidins from pine bark by mass spectrometry. Rapid Commun Mass Spectrom 2009; 23: 4013-4018
  • 66 Behrens A, Maie N, Knicker H, Kögel-Knabner I. MALDI-TOF mass spectrometry and PSD fragmentation as means for the analysis of condensed tannins in plant leaves and needles. Phytochemistry 2003; 62: 1159-1170
  • 67 Jones JJ, Stump MJ, Fleming RC, Lay jr. JO, Wilkins CL. Strategies and data analysis techniques for lipid and phospholipid chemistry elucidation by intact cell MALDI-FTMS. J Am Soc Mass Spectrom 2004; 15: 1665-1674
  • 68 Wang J, Sporns P. MALDI-TOF MS analysis of food flavonol glycosides. J Agric Food Chem 2000; 48: 1657-1662
  • 69 Svatoš A. Single-cell metabolomics comes of age: new developments in mass spectrometry profiling and imaging. Anal Chem 2011; 83: 5037-5044
  • 70 Kueger S, Steinhauser D, Willmitzer L, Giavalisco P. High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. Plant J 2012; 70: 39-50
  • 71 Hegeman AD. Plant metabolomics-meeting the analytical challenges of comprehensive metabolite analysis. Brief Funct Genomics 2010; 9: 139-148
  • 72 Shroff R, Rulíšek L, Doubský J, Svatoš A. Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc Natl Acad Sci U S A 2009; 106: 10092-10096
  • 73 Kaspar S, Peukert M, Svatos A, Matros A, Mock HP. MALDI-imaging mass spectrometry – An emerging technique in plant biology. Proteomics 2011; 11: 1840-1850
  • 74 Silva DB, Turatti ICC, Gouveia DR, Ernst M, Teixeira SP, Lopes NP. Mass spectrometry of flavonoid vicenin-2, based sunlight barriers in Lychnophora species. Sci Rep 2014; 4: 4309
  • 75 Lee YJ, Perdian DC, Song Z, Yeung ES, Nikolau BJ. Use of mass spectrometry for imaging metabolites in plants. Plant J 2012; 70: 81-95
  • 76 Fuchs B, Süß R, Nimptsch A, Schiller J. MALDI-TOF-MS directly combined with TLC: a review of the current state. Chromatographia 2009; 69: S95-S105
  • 77 Fuchs B, Schiller J, Süss R, Schürenberg M, Suckau D. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem 2007; 389: 827-834
  • 78 Bonfill M, Mangas S, Cusidó RS, Osuna L, Piño MT, Palazón J. Identification of triterpenoid compounds of Centella asiatica by thin-layer chromatography and mass spectrometry. Biomed Chromatogr 2006; 20: 151-153
  • 79 Hayen H, Volmer DA. Rapid identification of siderophores by combined thin-layer chromatography/matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 2005; 19: 711-720
  • 80 Shariatgorji M, Spacil Z, Maddalo G, Cardenas LB, Ilag LL. Matrix-free thin-layer chromatography/laser desorption ionization mass spectrometry for facile separation and identification of medicinal alkaloids. Rapid Commun Mass Spectrom 2009; 23: 3655-3660
  • 81 Yamagaki T, Watanabe T. Hydrogen radical removal causes complex overlapping isotope patterns of aromatic carboxylic acids in negative-ion matrix-assisted laser desorption/ionization mass spectrometry. Mass Spectrom (Tokyo) 2012; 1: A0005
  • 82 Wang X, Han J, Chou A, Yang J, Pan J, Borchers CH. Hydroxyflavones as a new family of matrices for MALDI tissue imaging. Anal Chem 2013; 85: 7566-7573
  • 83 Hvattum E, Ekeberg D. Study of the collision-induced radical cleavage of flavonoid glycosides using negative electrospray ionization tandem quadrupole mass spectrometry. J Mass Spectrom 2003; 38: 43-49
  • 84 Houston CT, Taylor WP, Widlanski TS, Reilly JP. Investigation of enzyme kinetics using quench-flow techniques with MALDI-TOF mass spectrometry. Anal Chem 2000; 72: 3311-3319
  • 85 Xu Z, Yao S, Wei Y, Zhou J, Zhang L, Wang C, Guo Y. Monitoring enzyme reaction and screening of inhibitors of acetylcholinesterase by quantitative matrix-assisted laser desorption/ionization fourier transform mass spectrometry. J Am Soc Mass Spectrom 2008; 19: 1849-1855
  • 86 Su X, Kong L, Lei X, Hu L, Ye M, Zou H. Biological fingerprinting analysis of traditional Chinese medicines with targeting ADME/Tox property for screening of bioactive compounds by chromatographic and MS methods. Mini Rev Med Chem 2007; 7: 87-98
  • 87 Pan C, Xu S, Hu L, Su X, Ou J, Zou H, Guo Z, Zhang Y, Guo B. Using oxidized carbon nanotubes as matrix for analysis of small molecules by MALDI-TOF MS. J Am Soc Mass Spectrom 2005; 16: 883-892
  • 88 Xu SY, Li YF, Zou HF, Qiu JS, Guo Z, Guo BC. Carbon nanotubes as assisted matrix for laser desorption/ionization time-of-flight mass spectrometry. Anal Chem 2003; 75: 6191-6195
  • 89 Ugarov MV, Egan T, Khabashesku DV, Schultz JA, Peng HQ, Khabashesku VN, Furutani H, Prather KS, Wang HWJ, Jackson SN, Woods AS. MALDI matrices for biomolecular analysis based on functionalized carbon nanomaterials. Anal Chem 2004; 76: 6734-6742
  • 90 Fisher AA, Labenski MT, Monks TJ, Lau SS. Utilization of MALDI-TOF to determine chemical-protein adduct formation in vitro . Methods Mol Biol 2011; 691: 303-316
  • 91 Mané C, Sommerer N, Yalcin T, Cheynier V, Cole RB, Fulcrand H. Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes. Anal Chem 2007; 79: 2239-2248
  • 92 Chen Y, Hagerman AE. Characterization of soluble non-covalent complexes between bovine serum albumin and β-1, 2, 3, 4, 6-penta-O-galloyl-D-glucopyranose by MALDI-TOF MS. J Agric Food Chem 2004; 52: 4008-4011
  • 93 Xu S, Pan C, Hu L, Zhang Y, Guo Z, Li X, Zou H. Enzymatic reaction of the immobilized enzyme on porous silicon studied by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis 2004; 25: 3669-3676
  • 94 Caprioli RM, Farme TB, Gile J. Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 1997; 69: 4751-4760
  • 95 Schwamborn K, Caprioli RM. Molecular imaging by mass spectrometry – looking beyond classical histology. Nat Rev Cancer 2010; 10: 639-646
  • 96 Balluff B, Schöne C, Höfler H, Walch A. MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 2011; 136: 227-244
  • 97 Watrous JD, Alexandrov T, Dorrestein PC. The evolving field of imaging mass spectrometry and its impact on future biological research. J Mass Spectrom 2011; 46: 209-222
  • 98 Nunes TM, Mateus S, Favaris AP, Amaral MF, Zuben LG, Clososki GC, Bento JMS, Oldroyd BP, Silva R, Zucchi R, Silva DB, Lopes NP. Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds. Sci Rep 2014; 4: 7449
  • 99 Andersson M, Andren P, Caprioli RM. MALDI imaging and profiling mass spectrometry in neuroproteomics. In: Aalzate O, editor Neuroproteomics. Boca Raton, FL: CRC Press/Taylor & Francis; 2010: 115-134
  • 100 Dong Y, Li B, Malitsky S, Rogachev I, Aharoni A, Kaftan F, Svatoš A, Franceschi P. Sample preparation for mass spectrometry imaging of plant tissues: a review. Front Plant Sci 2016; 7: 60
  • 101 Burrell M, Earnshaw C, Clench M. Imaging matrix assisted laser desorption ionization mass spectrometry: a technique to map plant metabolites within tissues at high spatial resolution. J Exp Bot 2007; 58: 757-763
  • 102 Esquenazi E, Yang YL, Watrous J, Gerwick WH, Dorrestein PC. Imaging mass spectrometry of natural products. Nat Prod Rep 2009; 26: 1521-1534
  • 103 Watrous JD, Dorrestein PC. Imaging mass spectrometry in microbiology. Nat Rev Microbiol 2011; 9: 683-694
  • 104 Moree WJ, Phelan VV, Wu CH, Bandeira N, Cornett DS, Duggan BM, Dorrestein PC. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci U S A 2012; 109: 13811-13816
  • 105 Handberg E, Chingin K, Wang N, Dai X, Chen H. Mass spectrometry imaging for visualizing organic analytes in food. Mass Spectrom Rev 2015; 34: 641-658
  • 106 Shroff R, Vergara F, Muck A, Svatoš A, Gershenzon J. Nonuniform distribution of glucosinolates in Arabidopsis thaliana leaves has important consequences for plant defense. Proc Natl Acad Sci U S A 2008; 105: 6196-6201
  • 107 Hölscher D, Shroff R, Knop K, Gottschaldt M, Crecelius A, Schneider B, Heckel DG, Schubert US, Svatos A. Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J 2009; 60: 907-918
  • 108 Franceschi P, Dong Y, Strupat K, Vrhovsek U, Mattivi F. Combining intensity correlation analysis and MALDI imaging to study the distribution of flavonols and dihydrochalcones in Golden Delicious apples. J Exp Bot 2012; 63: 1123-1133
  • 109 Goto-Inoue N, Setou M, Zaima N. Visualization of spatial distribution of gamma-aminobutyric acid in eggplant (Solanum Melongena) by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Sci 2010; 26: 821-825
  • 110 Goodwin RJ. Sample preparation for mass spectrometry imaging: small mistakes can lead to big consequences. J Proteomics 2012; 75: 4893-4911
  • 111 Peukert M, Matros A, Lattanzio G, Kaspar S, Abadía J, Mock HP. Spatially resolved analysis of small molecules by matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI). New Phytol 2012; 193: 806-815
  • 112 Prentice BM, Chumbley CW, Caprioli RM. High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling. J Mass Spectrom 2015; 50: 703-710
  • 113 McDonnell LA, Römpp A, Balluff B, Heeren RMA, Albar JP, Andrén PE, Corthals GL, Walch A, Stoeckli M. Discussion point: reporting guidelines for mass spectrometry imaging. Anal Bioanal Chem 2015; 407: 2035-2045
  • 114 Thiele H, Heldmann S, Trede D, Strehlow J, Wirtz S, Dreher W, Berger J, Oetjen J, Kobarg JH, Fischer B, Maass P. 2D and 3D MALDI-imaging: conceptual strategies for visualization and data mining. Biochim Biophys Acta 2014; 1844: 117-137
  • 115 Heeren RMA. Getting the picture: The coming of age of imaging MS. Int J Mass Spectrom 2015; 377: 672-680
  • 116 Heyman HM, Dubery IA. The potential of mass spectrometry imaging in plant metabolomics: a review. Phytochem Rev 2016; 15: 297-316
  • 117 Horn PJ, Chapman KD. Lipidomics in situ: insights into plant lipid metabolism from high resolution spatial maps of metabolites. Prog Lipid Res 2014; 54: 32-52
  • 118 Dalisay DS, Kim KW, Lee C, Yang H, Rübel O, Bowen BP, Davin LB, Lewis NJ. Dirigent protein-mediated lignan and cyanogenic glucoside formation in flax seed: integrated omics and MALDI mass spectrometry imaging. J Nat Prod 2015; 78: 1231-1242
  • 119 Cotter RJ. Time-of-flight mass spectrometer. In: Cole RB, editor Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Hoboken: John Wiley & Sons; 2010: 345-364
  • 120 Wolff JJ, Amster IJ. Fourier transform ion cyclotron resonance and magnetic sector analyzers for ESI and MALDI. In: Cole RB, editor Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Hoboken: John Wiley & Sons; 2010: 365-406
  • 121 Hakansson K, Klassen JS. Ion activation methods for tandem mass spectrometry. In: Cole RB, editor Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Hoboken: John Wiley & Sons; 2010: 571-630
  • 122 March RE, Li H, Belgacem O, Papanastasiou D. High-energy and low-energy collision-induced dissociation of protonated flavonoids generated by MALDI and by electrospray ionization. Int J Mass Spectrom 2007; 262: 51-66
  • 123 Zhou X, Wei Y, He Q, Boey F, Zhang Q, Zhang H. Reduced graphene oxide films used asmatrix of MALDI-TOF-MS for detection of octachlorodibenzo-p-dioxin. Chem Commun (Camb) 2010; 46: 6974-6976
  • 124 Madeira PJA, Florêncio MH. Flavonoid-matrix cluster ions in MALDI mass spectrometry. J Mass Spectrom 2009; 44: 1105-1113
  • 125 Yamagaki T, Watanabe T, Tanaka M, Sugahara K. Laser-Induced hydrogen radical removal in UV MALDI MS allows for the differentiation of flavonoid monoglycoside isomers. J Am Soc Mass Spectrom 2014; 25: 88-94
  • 126 Pavarini DP, Silva DB, Carollo CA, Portella APF, Latansio-Aidar SR, Cavalin PO, Oliveira VC, Rosado BHP, Aidar MPM, Bolzani VS, Lopes NP, Joly CA. Application of MALDI-MS analysis of rainforest chemodiversity: a keystone for biodiversity conservation and sustainable use. J Mass Spectrom 2012; 47: 1482-1485
  • 127 March RE, Lewars EG, Stadey CJ, Miao XS, Zhao X, Metcalfe CD. A comparison of flavonoid glycosides by electrospray tandem mass spectrometry. Int J Mass Spectrom 2006; 248: 61-85
  • 128 Radebe N, Rode K, Pizzi A, Pasch H. Microstructure elucidation of polyflavonoid tannins by MALDI-TOF-CID. J Appl Polym Sci 2012; 127: 1937-1950
  • 129 Moneti G, Francese S, Mastrobuoni G, Pieraccini G, Seraglia R, Valitutti G, Traldi P. Do collisions inside the collision cell play a relevant role in CID-LIFT experiments?. J Mass Spectrom 2007; 42: 117-126
  • 130 Neubert H, Halket JM, Ocana MF, Patel RKP. MALDI post-source decay and LIFT-TOF/TOF investigation of α-cyano-4-hydroxycinnamic acid cluster interferences. J Am Soc Mass Spectrom 2004; 15: 336-343
  • 131 Jespersen S, Chaurand P, van Strien FJ, Spengler B, van der Greef J. Direct sequencing of neuropeptides in biological tissue by MALDI-PSD mass spectrometry. Anal Chem 1999; 71: 660-666
  • 132 Spengler B. Post-source decay analysis in matrix-assisted laser desorption/ionization mass spectrometry of biomolecules. J Mass Spectrom 1997; 32: 1019-1036
  • 133 Talbo G, Mann M. Aspects of the sequencing of carbohydrates and oligonucleotides by matrix-assisted laser desorption/ionization post-source decay. Rapid Commun Mass Spectrom 1996; 10: 100-103
  • 134 Zehl M, Pittenauer E, Jirovetz L, Bandhari P, Singh B, Kaul VK, Rizzi AR, Allmaier G. Multistage and tandem mass spectrometry of glycosylated triterpenoid saponins isolated from Bacopa monnieri: comparison of the information content provided by different techniques. Anal Chem 2007; 79: 8214-8221
  • 135 Wang J, Sporns P. MALDI-TOF MS analysis of isoflavones in soy products. J Agric Food Chem 2000; 48: 5887-5892
  • 136 Wingerath T, Stahl W, Kirsch D, Kaufmann R, Sies H. Fruit juice carotenol fatty acid esters and carotenoids as identified by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. J Agric Food Chem 1996; 44: 2006-2013
  • 137 Radebe N, Rode K, Pizzi A, Giovando S, Pasch H. MALDI-TOF-CID for the microstructure elucidation of polymeric hydrolysable tannins. J Appl Polym Sci 2013; 128: 97-107
  • 138 Fuchs B, Schober C, Richter G, Süss R, Schiller J. MALDI-TOF MS of phosphatidylethanolamines: different adducts cause different post source decay (PSD) fragment ion spectra. J Biochem Biophys Methods 2007; 70: 689-692
  • 139 Picariello G, Sacchi R, Addeo F. One-step characterization of triacylglycerols from animal fat by MALDI-TOF MS. Eur J Lipid Sci Technol 2007; 109: 511-524
  • 140 Fuchs B, Süss R, Schiller J. An update of MALDI-TOF mass spectrometry in lipid research. Prog Lipid Res 2010; 49: 450-475
  • 141 Guaratini T, Vessecchi R, Pinto E, Colepicolo P, Lopes NP. Balance of xanthophylls molecular and protonated molecular ions in electrospray ionization. J Mass Spectrom 2005; 40: 963-968
  • 142 Vessecchi E, Crotti AE, Guaratini T, Colepicolo P, Galembeck SE, Lopes NP. Radical ion generation processes of organic compounds in electrospray ionization mass spectrometry. Mini Rev Org Chem 2007; 4: 75-87
  • 143 van Breemen RB, Schmitz HH, Schwartz SJ. Fast atom bombardment tandem mass spectrometry of carotenoids. J Agric Food Chem 1995; 43: 384-389
  • 144 Kéki S, Deák G, Lévai A, Zsuga M. Post-source decay matrix-assisted laser desorption/ionization mass spectrometric study of peracetylated isoflavone glycosides cationized by protonation and with various metal ions. J Mass Spectrom 2003; 38: 1207-1209
  • 145 Kéki S, Nagy L, Deák G, Zsuga M, Somogyi L, Lévai A. Cationization of simple organic molecules by singly-charged Ag3 + cluster ions in matrix-assisted laser desorption/ionization mass spectrometry: metal cluster-molecule interactions. J Am Soc Mass Spectrom 2004; 15: 879-883
  • 146 Guo S, Falk E, Kenne L, Rönnberg B, Sundquist BG. Triterpenoid saponins containing an acetylated branched D-fucosyl residue from Quillaja saponaria Molina. Phytochemistry 2000; 53: 861-868
  • 147 Dyck SV, Gerbaux P, Flammang P. Elucidation of molecular diversity and body distribution of saponins in the sea cucumber Holothuria forskali (Echinodermata) by mass spectrometry. Comp Biochem Physiol B Biochem Mol Biol 2009; 152: 124-134
  • 148 Cheng C, Gross ML. Applications and mechanisms of charge-remote fragmentation. Mass Spectrom Rev 2000; 19: 398-420
  • 149 Griffiths W. Tandem mass spectrometry in the study of fatty acids, bile acids, and steroids. Mass Spectrom Rev 2003; 22: 81-152
  • 150 Bahrami Y, Zhang W, Chataway T, Franco C. Structural elucidation of novel saponins in the sea cucumber Holothuria lessoni . Mar Drugs 2014; 12: 4439-4473
  • 151 Bahrami Y, Zhang W, Franco C. Discovery of novel saponins from the viscera of the sea cucumber Holothuria lessoni . Mar Drugs 2014; 12: 2633-2667
  • 152 Pasch H, Pizzi A, Rode K. MALDI-TOF mass spectrometry of polyflavonoid tannins. Polymer (Guildf) 2001; 42: 7531-7539
  • 153 Guaratini T, Armelini AI, Ferrari CR, Schefer RR, Neto AP, Navas R, Reigada JB, Silva DB. Application of matrix-assisted laser-desorption/ionization time-of-flight LIFT for identification of cocoa condensed tannins. J Mass Spectrom 2014; 49: 251-255
  • 154 Mateos-Martín ML, Fuguet E, Quero C, Pérez-Jiménez J, Torres JL. New identification of proanthocyanidins in cinnamon (Cinnamomum zeylanicum L.) using MALDI-TOF/TOF MS. Anal Bioanal Chem 2012; 402: 1327-1336
  • 155 Prado LC, Silva DB, de Oliveira-Silva GL, Hiraki KR, Canabrava HA, Bispo-da-Silva LB. The gastroprotective effects of Eugenia dysenterica (Myrtaceae) leaf extract: the possible role of condensed tannins. Biol Pharm Bull 2014; 37: 722-730
  • 156 Trentin DS, Silva DB, Amaral MW, Zimmer KR, Silva MV, Lopes NP, Giordani RB, Macedo AJ. Tannins possessing bacteriostatic effect impair Pseudomonas aeruginosa adhesion and biofilm formation. PLoS One 2013; 11: e66257
  • 157 Trentin DS, Silva DB, Frasson AP, Rzhepishevska O, da Silva MV, Pulcini EL, James G, Soares GV, Tasca T, Ramstedt M, Giordani RB, Lopes NP, Macedo AJ. Natural Green coating inhibits adhesion of clinically important bacteria. Sci Rep 2015; 5: 8287
  • 158 Pérez-Jiménez J, Torres JL. Analysis of proanthocyanidins in almond blanch water by HPLC–ESI–QqQ–MS/MS and MALDI–TOF/TOF MS. Food Res Int 2012; 49: 798-806
  • 159 Cai YZ, Xing J, Sun M, Zhan ZK, Corke H. Phenolic antioxidants (hydrolyzable tannins, flavonols, and anthocyanins) identified by LC-ESI-MS and MALDI-QIT-TOF MS from Rosa chinensis flowers. J Agric Food Chem 2005; 53: 9940-9948
  • 160 Sáyago-Ayerdi SG, Moreno-Hernández CL, Montalvo-González E, García-Magaña ML, Oca MMM, Torres JL, Pérez-Jiménez J. Mexican ‘Ataulfo’ mango (Mangifera indica L) as a source of hydrolyzable tannins. Analysis by MALDI-TOF/TOF MS. Food Res Int 2013; 51: 188-194
  • 161 Xiang P, Lin Y, Lin P, Xiang C, Yang Z, Lu Z. Effect of cationization reagents on the matrix-assisted laser desorption/ionization time-of-flight mass spectrum of Chinese gallotannins. J Appl Polym Sci 2007; 105: 859-864
  • 162 Silva VC, Napolitano A, Eletto D, Rodrigues CM, Pizza C, Vilegas W. Characterization of gallotannins from Astronium species by flow injection analysis- electrospray ionization-ion trap-tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of- flight mass spectrometry. Eur J Mass Spectrom 2011; 17: 365-375
  • 163 Reed JD, Krueger CG, Vestling MM. MALDI-TOF mass spectrometry of oligomeric food polyphenols. Phytochemistry 2005; 66: 2248-2263
  • 164 Meyers KJ, Swiecki TJ, Mitchell AE. Understanding the native Californian diet: identification of condensed and hydrolyzable tannins in tanoak acorns (Lithocarpus densiflorus). J Agric Food Chem 2006; 54: 7686-7691
  • 165 Berardini N, Carle R, Schieber A. Characterization of gallotannins and benzophenone derivatives frommango (Mangifera indica L. cv. ‘Tommy Atkins’) peels, pulp and kernels by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 2004; 18: 2208-2216
  • 166 Spina E, Sturiale L, Romeo D, Impallomeni G, Garozzo D, Waidelich D, Glueckmann M. New fragmentation mechanisms in matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry of carbohydrates. Rapid Commun Mass Spectrom 2004; 18: 392-398
  • 167 Harvey DJ. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom Rev 1999; 18: 349-451
  • 168 Yoshimura Y, Zaima N, Moriyama T, Kawamura Y. Different localization patterns of anthocyanin species in the pericarp of black rice revealed by imaging mass spectrometry. PLoS One 2012; 7: e31285
  • 169 Menet MC, Sang S, Yang CS, Ho CT, Rosen RT. Analysis of theaflavins and thearubigins from black tea extract by MALDI-TOF mass spectrometry. J Agric Food Chem 2004; 52: 2455-2461
  • 170 Yassin GH, Koek JH, Kuhnert N. Identification of trimeric and tetrameric flavan-3-ol derivatives in the SII black tea thearubigin fraction of black tea using ESI-tandem and MALDI-TOF mass spectrometry. Food Res Int 2014; 63: 317-327
  • 171 Ho YC, Tseng MC, Lu YW, Lin CC, Chen YJ, Fuh MR. Nanoparticle-assisted MALDI-TOF MS combined with seed layer surface preparation for quantification of small molecules. Anal Chim Acta 2011; 697: 1-7
  • 172 Pham TV, Jimenez CR. OplAnalyzer: a toolbox for MALDI-TOF mass spectrometry data analysis. In: Perner P, Salvetti O, editors Advances in mass data analysis of images and signals in medicine, biotechnology, chemistry and food industry. 3rd edition. Leipzig, Germany: Springer; 2008: 73-81
  • 173 Kumar C, Mann M. Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Lett 2009; 583: 1703-1712
  • 174 Alexandrov T. MALDI imaging mass spectrometry: statistical data analysis and current computational challenges. BMC Bioinformatics 2012; 13: S11
  • 175 Morris JS, Baggerly KA, Gutstein HB, Coombes KR. Statistical contributions to proteomic research. Methods Mol Biol 2010; 641: 143-166
  • 176 Ge G, Wong GW. Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles. BMC Bioinformatics 2008; 9: 275
  • 177 Tong DL, Boocock DJ, Coveney C, Saif J, Gomez SG, Querol S, Rees R, Ball GR. A simpler method of preprocessing MALDI-TOF MS data for differential biomarker analysis: stem cell and melanoma cancer studies. Clin Proteomics 2011; 8: 14
  • 178 Ressom HW, Varghese RS, Goldman L, Loffredo CA, Abdel-Hamid M, Kyselova Z, Mechref Y, Novotny M, Goldman R. Analysis of MALDI-TOF mass spectrometry data for detection of glycan biomarkers. Pac Symp Biocomput 2008; 216-227
  • 179 Oberg AL, Vitek O. Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res 2009; 8: 2144-2156
  • 180 Hu J, Coombes KR, Morris JS, Baggerly KA. The importance of experimental design in proteomic mass spectrometry experiments: some cautionary tales. Brief Funct Genomic Proteomic 2005; 3: 322-331
  • 181 Cairns DA. Statistical issues in quality control of proteomic analyses: good experimental design and planning. Proteomics 2011; 11: 1037-1048
  • 182 Zhang L, Borror CM, Sandrin TR. A designed experiments approach to optimization of automated data acquisition during characterization of bacteria with MALDI-TOF mass spectrometry. PLoS One 2014; 9: e92720
  • 183 Xiang B, Prado M. An accurate and clean calibration method for MALDI-MS. J Biomol Tech 2010; 21: 116-119
  • 184 Saideman SR, Ma M, Kutz-Naber KK, Cook A, Torfs P, Schoofs L, Li L, Nusbaum MP. Modulation of rhythmic motor activity by pyrokinin peptides. J Neurophysiol 2007; 97: 579-595
  • 185 He Z, Qi RZ, Yu W. Bioinformatic analysis of data generated from MALDI mass spectrometry for biomarker discovery. Top Curr Chem 2013; 331: 193-209
  • 186 Hilario M, Kalousis A. Approaches to dimensionality reduction in proteomic biomarker studies. Brief Bioinform 2008; 9: 102-118
  • 187 Hilario M, Kalousis A, Pellegrini C, Müller M. Processing and classification of protein mass spectra. Mass Spectrom Rev 2006; 25: 409-449
  • 188 Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics 2012; 28: 2270-2271
  • 189 Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR. SNIP, a statistics-sensitive background treatment for the quantitative analysis of PIXE spectra in geoscience applications. Nucl Instrum Methods Phys Res B 1988; 34: 396-402
  • 190 Veltri P. Algorithms and tools for analysis and management of mass spectrometry data. Brief Bioinform 2008; 9: 144-155
  • 191 He QP, Wang J, Mobley JA, Richman J, Grizzle WE. Self-calibrated warping for mass spectra alignment. Cancer Inform 2011; 10: 65-82
  • 192 Bloemberg TG, Gerretzen J, Lunshof A, Wehrens R, Buydens LMC. Warping methods for spectroscopic and chromatographic signal alignment: a tutorial. Anal Chim Acta 2013; 781: 14-32
  • 193 R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2010
  • 194 Yang C, He Z, Yu W. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinformatics 2009; 10: 4
  • 195 Smith CA, Want EJ, OʼMaille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem 2006; 78: 779-787
  • 196 Wang W, Zhou H, Lin H, Roy S, Shaler TA, Hill LR, Norton S, Kumar P, Anderle M, Becker CH. Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 2003; 75: 4818-4826
  • 197 Ejigu BA, Valkenborg D, Baggerman G, Vanaerschot M, Witters E, Dujardin JC, Burzykowski T, Berg M. Evaluation of normalization methods to pave the way towards large-scale LC-MS-based metabolomics profiling experiments. OMICS 2013; 17: 473-485
  • 198 Deininger SO, Cornett DS, Paape R, Becker M, Pineau C, Rauser S, Walch A, Wolski E. Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal Bioanal Chem 2011; 401: 167-181
  • 199 Webb A. Statistical pattern recognition. New York: Oxford University Press; 1999
  • 200 Suzuki R, Shimodaira H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006; 22: 1540-1542
  • 201 Wehrens R. Chemometrics with R: multivariate data analysis in the natural sciences and life sciences (Use R!). New York: Springer; 2011
  • 202 Alexandrov T, Kobarg JH. Efficient spatial segmentation of large imaging mass spectrometry datasets with spatially aware clustering. Bioinformatics 2011; 27: i230-i238
  • 203 Giacomoni F, Le Corguillé G, Monsoor M, Landi M, Pericard P, Pétéra M, Duperier C, Tremblay-Franco M, Martin JF, Jacob D, Goulitquer S, Thévenot EA, Caron C. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 2015; 31: 1493-1495
  • 204 Steinbeck C, Conesa P, Haug K, Mahendraker T, Williams M, Maguire E, Rocca-Serra P, Sansone SA, Salek RM, Griffin JL. MetaboLights: towards a new COSMOS of metabolomics data management. Metabolomics 2012; 8: 757-760
  • 205 Ara T, Enomoto M, Arita M, Ikeda C, Kera K, Yamada M, Nishioka T, Ikeda T, Nihei Y, Shibata D, Kanaya S, Sakurai N. Metabolonote: a wiki-based database for managing hierarchical metadata of metabolome analyses. Front Bioeng Biotechnol 2015; 3: 38
  • 206 Aamodt A, Plaza E. Case-based reasoning: foundational issues, methodological variations, and system approaches. AI communications 1994; 7: 39-59
  • 207 Forim MR, Cornélio VE, da Silva MF, Rodrigues-Filho E, Fernandes JB, Vieira PC, Matinez SS, Napolitano MP, Yost RA. Chemical characterization of Azadirachta indica grafted on Melia azedarach and analyses of azadirachtin by HPLC-MS-MS (SRM) and meliatoxins by MALDI-MS. Phytochem Anal 2010; 21: 363-373
  • 208 Pogam PL, Schinkovitz A, Legouin B, Lamer ACL, Boustie L, Richomme P. Matrix-free UV-laser desorption ionization mass spectrometry as a versatile approach for accelerating dereplication studies on lichens. Anal Chem 2015; 87: 10421-10428
  • 209 Wang H, Dai B, Liu B, Lu H. Coumarins as new matrices for matrix-assisted laser-desorption/ionization Fourier transform ion cyclotron resonance mass spectrometric analysis of hydrophobic compounds. Anal Chim Acta 2015; 882: 49-57
  • 210 Annangudi SP, Myung K, Adame CA, Gilbert JR. MALDI-MS imaging analysis of fungicide residue distributions on wheat leaf surfaces. Environ Sci Technol 2015; 49: 5579-5583
  • 211 Berisha A, Dold S, Guenther S, Desbenoit N, Takats Z, Spengler B, Römpp A. A comprehensive high-resolution mass spectrometry approach for characterization of metabolites by combination of ambient ionization, chromatography and imaging methods. Rapid Commun Mass Spectrom 2014; 28: 1779-1791
  • 212 Sekuła J, Nizioł J, Misiorek M, Dec P, Wrona A, Arendowski A, Ruman T. Gold nanoparticle-enhanced target for MS analysis and imaging of harmful compounds in plant, animal tissue and on fingerprint. Anal Chim Acta 2015; 895: 45-53
  • 213 Shroff R, Schramm K, Jeschke V, Nemes P, Vertes A, Gershenzon J, Svatoš A. Quantification of plant surface metabolites by MALDI mass spectrometry imaging: glucosinolates on Arabidopsis thaliana leaves. Plant J 2015; 81: 961-972
  • 214 Takahashi K, Kozuka T, Anegawa A, Nagatani A, Mimura T. Development and application of a high-resolution imaging mass spectrometer for the study of plant tissues. Plant Cell Physiol 2015; 56: 1329-1338
  • 215 Oliveira DN, Ferreira MS, Catharino RR. Rapid and simultaneous in situ assessment of aflatoxins and stilbenes using silica plate imprinting mass spectrometry imaging. PLoS One 2014; 9: e90901
  • 216 Gamboa-Becerra R, Ramírez-Chávez E, Molina-Torres J, Winkler R. MSI.R scripts reveal volatile and semi-volatile features in low-temperature plasma mass spectrometry imaging (LTP-MSI) of chilli (Capsicum annuum). Anal Bioanal Chem 2015; 407: 5673-5684
  • 217 Soares MS, da Silva DF, Forim MR, da Silva MF, Fernandes JB, Vieira PC, Silva DB, Lopes NP, de Carvalho SA, de Souza AA, Machado MA. Quantification and localization of hesperidin and rutin in Citrus sinensis grafted on C. limonia after Xylella fastidiosa infection by HPLC-UV and MALDI imaging mass spectrometry. Phytochemistry 2015; 115: 161-170
  • 218 Araújo P, Ferreira MS, de Oliveira DN, Pereira L, Sawaya AC, Catharino RR, Mazzafera P. Mass spectrometry imaging: an expeditious and powerful technique for fast in situ lignin assessment in Eucalyptus . Anal Chem 2014; 86: 3415-3419
  • 219 Li B, Bhandari DR, Janfelt C, Römpp A, Spengler B. Natural products in Glycyrrhiza glabra (licorice) rhizome imaged at the cellular level by atmospheric pressure matrix-assisted laser desorption/ionization tandem mass spectrometry imaging. Plant J 2014; 80: 161-171
  • 220 Horn PJ, Chapman KD. Metabolite Imager: customized spatial analysis of metabolite distributions in mass spectrometry imaging. Metabolomics 2014; 10: 337-348
  • 221 Liaimer A, Helfrich EJN, Hinrichs K, Guljamow A, Ishida K, Hertweck C, Dittmann E. Nostopeptolide plays a governing role during cellular differentiation of the symbiotic cyanobacterium Nostoc punctiforme . Proc Natl Acad Sci U S A 2015; 112: 1862-1867
  • 222 Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock HP, Matros A. Spatio-temporal dynamics of fructan metabolism in developing barley grains. Plant Cell 2014; 26: 3728-3744
  • 223 Kusari S, Sezgin S, Nigutova K, Cellarova E, Spiteller M. Spatial chemo-profiling of hypericin and related phytochemicals in Hypericum species using MALDI-HRMS imaging. Anal Bioanal Chem 2015; 407: 4779-4791
  • 224 Rudolph-Mohr N, Gottfried S, Lamshöft M, Zühlke S, Oswald SE, Spiteller M. Non-invasive imaging techniques to study O2 micro-patterns around pesticide treated lupine roots. Geoderma 2015; 239–240: 257-264
  • 225 Gemperline E, Jayaraman D, Maeda J, Ané JM, Li L. Multifaceted investigation of metabolites during nitrogen fixation in medicago via high resolution MALDI-MS imaging and ESI-MS. J Am Soc Mass Spectrom 2015; 26: 149-158
  • 226 Holscher D, Fuchser J, Knop K, Menezes RC, Buerkert A, Svatoš A, Schubert US, Schneider B. High resolution mass spectrometry imaging reveals the occurrence of phenylphenalenone-type compounds in red paracytic stomata and red epidermis tissue of Musa acuminata ssp. zebrina cv. ‘Rowe Red’. Phytochemistry 2015; 116: 239-245
  • 227 Seneviratne HK, Dalisay DS, Kim KW, Moinuddin SGA, Yang H, Hartshorn CM, Davin LB, Lewis NG. Non-host disease resistance response in pea (Pisum sativum) pods: Biochemical function of DRR206 and phytoalexin pathway localization. Phytochemistry 2015; 113: 140-148
  • 228 Seaman C, Flinders B, Eijkel G, Heeren RMA, Bricklebank N, Clenc MR. “Afterlife Experiment”: use of MALDI-MS and SIMS imaging for the study of the nitrogen cycle within plants. Anal Chem 2014; 86: 10071-10077
  • 229 Li C, Wang Z, Jones AD. Chemical imaging of trichome specialized metabolites using contact printing and laser desorption/ionization mass spectrometry. Anal Bioanal Chem 2014; 406: 171-182
  • 230 Friesen WL, Schultz BJ, Destino JF, Alivio TEG, Steet JR, Banerjee S, Wood TD. Two-dimensional graphene as a matrix for MALDI imaging mass spectrometry. J Am Soc Mass Spectrom 2015; 26: 1963-1966
  • 231 Velickovic D, Herdier H, Philippe G, Marion D, Rogniaux H, Bakan B. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer. Plant J 2014; 80: 926-935
  • 232 Korte AR, Yandeau-Nelson MD, Nikolau BJ, Lee YJ. Subcellular-level resolution MALDI-MS imaging of maize leaf metabolites by MALDI-linear ion trap-Orbitrap mass spectrometer. Anal Bioanal Chem 2015; 407: 2301-2309