Planta Med 2016; 82(08): 712-716
DOI: 10.1055/s-0042-102459
Biological and Pharmacological Activity
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

Antifungal Indole Alkaloids from Winchia calophylla

Mei-Li Yang
1   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, P. R. China
,
Jia Chen
2   School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, P. R. China
,
Meng Sun
1   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, P. R. China
,
Dong-Bo Zhang
1   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, P. R. China
,
Kun Gao
1   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, P. R. China
2   School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, P. R. China
› Author Affiliations
Further Information

Publication History

received 08 December 2015
revised 19 January 2016

accepted 24 January 2016

Publication Date:
22 March 2016 (online)

Abstract

Ten indole alkaloids (110) were obtained from an antifungal extract of Winchia calophylla, of which two (2 and 4) were new. N(4)-Methyl-10-hydroxyl-desacetylakuammilin (2) was an akuammiline-type indole alkaloid. N(1)-Methyl-echitaminic acid (4) was an unusual zwitterion with a basic vincorine-type skeleton. This is the first report of 10 in W. calophylla. The structures of all of the compounds were determined based on spectroscopic data, and their bioactivities were assessed. Compound 1 showed potent activity against the plant pathogenic fungi of Penicillium italicum and Fusarium oxysporum f.sp cubens with IC50 s of 10.4 and 11.5 µM, respectively, and 3 inhibited Rhizoctonia solani with an IC50 of 11.7 µM. Compounds 2 and 4 showed weak cytotoxicity against the human leukemic cell line HL-60 in vitro with IC50 s of 51.4 and 75.3 µM, respectively. Compounds 1 and 2 displayed weak activity against acetylcholinesterase with IC50 s around 61.3 and 52.6 µM, respectively.

Supporting Information

 
  • References

  • 1 Fletcher J, Bender C, Budowle B, Cobb WT, Gold SE, Ishimaru CA, Luster D, Melcher U, Murch R, Scherm H, Seem RC, Sherwood JL, Sobral BW, Tolin SA. Plant pathogen forensics: capabilities needs, and recommendations. Microbiol Mol Biol Rev 2006; 70: 450-471
  • 2 Barnard C, Padgitt M, Uri ND. Pesticide use and its measurement. Int Pest Control 1997; 39: 161-164
  • 3 Abad MJ, Ansuategui M, Bermejo P. Active antifungal substances from natural sources. ARKIVOC 2007; 7: 116-145
  • 4 Ellis JS, Keenan PJ, Rathmell WG, Friend J. Inhibition of phytoalexin accumulation in potato tuber disks by superoxide scavengers. Phytochemistry 1993; 34: 649-655
  • 5 Pedras MSC, Khan AQ. Biotransformation of the Brassica phytoalexin brassicanal A by the blackleg fungus. J Agric Food Chem 1996; 44: 3403-3407
  • 6 Purkayastha RP. Phytoalexin production and plant defense. Proc Indian Natn Sci Acad B 1996; 62: 51-64
  • 7 Pedras MSC, Suchy M, Ahiahonu PWK. Unprecedented chemical structure and biomimetic synthesis of erucalexin, a phytoalexin from the wild crucifer Erucastrum gallicum . Org Biomol Chem 2006; 4: 691-701
  • 8 Li B, Williams JD, Peet NP. Two concise total syntheses of the wasabi phytoalexin methyl 1-methoxyindole-3-carboxylate. Tetrahedron Lett 2013; 54: 3124-3126
  • 9 Wedge DE, Duke SO. Finding new fungicides from natural sources. Am Chem Soc Symp Ser 2006; 927: 152-167
  • 10 Ming CW, Ling ZP, Rücker G. N b-Demethylechitamine N-oxide from roots of Winchia calophylla . Planta Med 1988; 54: 480-481
  • 11 Zhu WM, Lu CH, Wang Y, Zhou J, Hao XJ. Monoterpenoids and their glycosides from Winchia calophylla . J Asian Nat Prod Res 2004; 6: 193-198
  • 12 Chen HL, Dong XP, Zhang M, Pei J, Wang SY, Qin XH, Jiang DF, Deng F, Ren B, Fu CM, Liu XW. Chemical constituents from Winchia calophylla . J Chem Soc Pakistan 2012; 34: 976-978
  • 13 Zhu WM, He HP, Fan LM, Shen YM, Zhou J, Hao XJ. Components of stem barks of Winchia calophylla A. DC. and their bronchodilator activities. J Integr Plant Biol 2005; 47: 892-896
  • 14 Li CM, Zhang XM, Zhou YL, Huang LY, Tao GD. [Studies on the indole alkaloids of Winchia calophylla A. DC]. Yao Xue Xue Bao 1993; 28: 512-515
  • 15 Li ML, Yang T, Liu Y, Liu J, Li MH, Wang YT, Yang SX, Zou Q, Li GY. Calophyline A, a new rearranged monoterpenoid indole alkaloid from Winchia calophylla . Org Lett 2012; 14: 3450-3453
  • 16 Kan C, Deverre JR, Sevenet T, Quirion JC, Husson HP. Indole alkaloid from Kopsia deverrei . Nat Prod Lett 1995; 7: 275-281
  • 17 Keawpradub N, Takayama H, Aimi N, Sakai SI. Indole alkaloids from Alstonia glaucescens . Phytochemistry 1994; 37: 1745-1749
  • 18 Hu WL, Zhu JP, Hesse M. Indole alkaloids from Alstonia angustifolia . Planta Med 1989; 55: 463-466
  • 19 Abdel-Aty AS. Fungicidal activity of indole derivatives against some plant pathogenic fungi. J Pestic Sci 2010; 35: 431-440
  • 20 Zhang L, Hua ZQ, Song Y, Feng CW. Monoterpenoid indole alkaloids from Alstonia rupestris with cytotoxic, antibacterial and antifungal activities. Fitoterapia 2014; 97: 142-147
  • 21 Wei W, Cheng MH, Wang XH. Monoterpenoid indole alkaloids from Alstonia rupestris with cytotoxic, anti-inflammatory and antifungal activities. Molecules 2013; 18: 7309-7322
  • 22 Liu L, Cao JX, Yao YC, Xu SP. Progress of pharmacological studies on alkaloids from Apocynaceae. J Asian Nat Prod Res 2013; 15: 166-184
  • 23 Medeiros MR, Prado LA, Fernandes VC, Figueiredo SS, Coppede J, Martins J, Fiori G, Martinez-Rossi NM, Beleboni RO, Contini SH, Pereira PS, Fachin AL. Antimicrobial activities of indole alkaloids from Tabernaemontana catharinensis . Nat Prod Commun 2011; 6: 193-196
  • 24 Ogata M, Ueda JY, Hoshi M, Hashimoto J, Nakashima T, Anzai K, Takagi M, Shin-Ya K. A novel indole diterpenoid, JBIR-03 with anti-MRSA activity from Dichotomomyces cejpii var. cejpii NBRC 103559. J Antibiot (Tokyo) 2007; 60: 645-648
  • 25 Oh KB, Mar W, Kim S, Kim JY, Oh M, Shin D, Sim CJ, Shin J. Antimicrobial activity and cytotoxicity of bis(indole) alkaloids from the sponge Spongosorites sp. Biol Pharm Bull 2006; 29: 570-573
  • 26 Torgeson DC. Fungicides: an advanced treatise. Vol II: chemistry and physiology. New York: Academic Press; 1969: 67-68
  • 27 Xiong WN, Yang CG, Jiang B. Synthesis of novel analogues of marine indole alkaloids: mono(indolyl)-4-trifluoromethylpyridines and bis(indolyl)-4-trifluoromethylpyridines as potential anticancer agents. Bioorg Med Chem 2001; 9: 1773-1780
  • 28 Mukhopadhyay S, Handy GA, Funayama S, Cordell GA. Anticancer indole alkaloids of Rhazya stricta . J Nat Prod 1981; 44: 696-700
  • 29 Keawpradub N, Eno-Amooquaye E, Burke PJ, Houghton PJ. Cytotoxic activity of indole alkaloids from Alstonia macrophylla . Planta Med 1999; 65: 311-315
  • 30 Einhorn LH, Donohue J. Cis-diamminedichloroplatinum, vinblastine and bleomycin combination chemotherapy in disseminated testicular cancer. Ann Intern Med 1977; 87: 293-294
  • 31 Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res 1981; 41: 1967-1972
  • 32 Starling KA, Donaldson MH, Haggard ME, Vietti TJ, Sutow WW. Therapy of histiocytosis X with vincristine, vinblastine, and cyclophosphamide. The Southwest Cancer Chemotherapy Study Group. Am J Dis Child 1972; 123: 105-110
  • 33 Jordan MA, Wilson L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr Opin Cell Biol 1998; 10: 123-130
  • 34 Baguley BC, Holdaway KM, Thomsen LL, Zhuang L, Zwi LJ. Inhibition of growth of colon adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer 1991; 27: 482-487
  • 35 Mangeney P, Andriamialisoa RZ, Langlois N, Langlois Y, Potier P. Preparation of vinblastine, vincristine, and leurosidine, antitumor alkaloids from Catharanthus species (Apocynaceae). J Am Chem Soc 1979; 101: 2243-2245
  • 36 Dombernowsky P, Hansen HH, Sorensen PG, Hainau B. Vincristine (NSC-67574) in the treatment of small-cell anaplastic carcinoma of the lung. Cancer Treat Rep 1976; 60: 239-242
  • 37 Llanos-Romero RE, Cardenas R, Zuniga B, Herrera-Santoyo J, Guevara-Fefer P. Acetylcholinesterase inhibitory activity of Haplophyton cimicidum . Nat Prod Res 2014; 28: 757-759
  • 38 Lahiri DK, Farlow MR, Greig N, Sambamurti K. Current drug targets for Alzheimerʼs disease treatment. Drug Dev Res 2002; 56: 267-281
  • 39 Yonekura-Sakakibara K, Saito K. Functional genomics for plant natural product biosynthesis. Nat Prod Rep 2009; 26: 1466-1487
  • 40 Zhou X, Xiao T, Iwama Y, Qin Y. Biomimetic total synthesis of (+)-gelsemine. Angew Chem Int Ed 2012; 51: 4909-4912
  • 41 Zhang M, Huang XP, Shen LQ, Qin Y. Total synthesis of the akuammiline alkaloid (±)-vincorine. J Am Chem Soc 2009; 131: 6013-6020
  • 42 Mu LY. Research methods of plant chemical protection. Beijing: Chinese Agricultural Press; 1994: 72-82
  • 43 Zhao J, Li Y, Liu Q, Gao K. Antimicrobial activities of some thymol derivatives from the roots of Inula hupehensis . Food Chem 2010; 120: 512-516
  • 44 Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 1988; 48: 589-601
  • 45 Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88-95
  • 46 Orhan I, Sener B, Choudhary MI, Khalid A. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol 2004; 91: 57-60
  • 47 Zhang DB, Chen JJ, Zhang L, Song QY, Gao K. Bioactive alkaloids from Palhinhaea cernua . Phytochem Lett 2014; 10: 76-79