Open Access
Planta Medica Letters 2016; 3(01): e20-e24
DOI: 10.1055/s-0042-102200
Letter
Georg Thieme Verlag KG Stuttgart · New York

A New Dinor-cis-Labdane Diterpene and Flavonoids with Antimycobacterium Activity from Colebrookea oppositifolia

Ashish A. Chinchansure
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
,
Manisha Arkile
2   Combi-Chem Bio-Resource Centre, CSIR-National Chemical Laboratory, Pune, India
,
Dinesh R. Shinde
3   Central NMR Facility, CSIR-National Chemical Laboratory, Pune, India
,
Dhiman Sarkar
2   Combi-Chem Bio-Resource Centre, CSIR-National Chemical Laboratory, Pune, India
,
Swati P. Joshi
1   Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India
› Institutsangaben
Weitere Informationen

Publikationsverlauf

received 16. Oktober 2015
revised 15. Dezember 2015

accepted 15. Januar 2016

Publikationsdatum:
14. März 2016 (online)

Preview

Abstract

The new 14,15-dinor-cis-labdane diterpene, named (+)-14,15-dinor-9α-hydroxy-cis-labd-11(E)-en-13-one (1), was isolated from the acetone extract of the aerial parts of Colebrookea oppositifolia, along with the known compounds alnustin (2), mosloflavone (3), flindulatin (4), 5,6,7-trimethoxy baicalein (5), tanetin (6), scutellarein 4′-methyl ether (7), apigenin (8), caffeic acid (9), anisofolin A (10), apigetrin (11), and forsythoside A (12). Structures of the new and known compounds were established by detailed analysis of 1D and 2D nuclear magnetic resonance studies. The isolated compounds 112 were evaluated for their antimycobacterium activity against Mycobacterium tuberculosis H37Ra and Mycobacterium bovis in both dormant and active phases. Compounds 1, 7, and 8 exhibited inhibitory activity against M. tuberculosis with IC50 values in the range of 8.1–55.0 µM (MIC 14.4–119.7 µM) in the active phase and 7.4–43.5 µM (MIC 11.5–123.3 µM) in the dormant phase. Similarly 1, 7, and 8 exhibited inhibitory activity against M. bovis with IC50 values in the range of 4.1–98.5 µM (MIC 13.7–161.0 µM) in the active phase and 4.1–111.1 µM (MIC 13.0–166.4 µM) in the dormant phase.

Supporting Information