Planta Med 2016; 82(09/10): 775-789
DOI: 10.1055/s-0042-101353
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Drugs and Drug Candidates from Marine Sources: An Assessment of the Current “State of Play”

David J. Newman
NIH Special Volunteers, Natural Products Branch, National Cancer Institute, Frederick, MD, USA
,
Gordon M. Cragg
NIH Special Volunteers, Natural Products Branch, National Cancer Institute, Frederick, MD, USA
› Author Affiliations
Further Information

Publication History

received 20 August 2015
revised 30 November 2015

accepted 05 January 2016

Publication Date:
18 February 2016 (online)

Abstract

The potential of the marine environment to produce candidate compounds (structures) as leads to, or even direct drugs from, has been actively discussed for the last 50 or so years. Over this time frame, several compounds have led to drugs, usually in the area of cancer (due to funding sources). This review is designed to show where there have been successes, but also to show that in a number of disease areas, there are structures originally isolated from marine invertebrates and free-living microbes that have potential, but will need to be “adopted” by pharmaceutical houses in order to maximize their potential.

 
  • References

  • 1 Ramirez-Llodra E, Brandt A, Danovaro R, De Mol B, Escobar E, German CR, Levin LA, Martinez Arbizu P, Menot L, Buhl-Mortensen P, Narayanaswamy BE, Smith CR, Tittensor DP, Tyler PA, Vanreusel A, Vecchione M. Deep, diverse and definitely different: unique attributes of the worldʼs largest ecosystem. Biogeosciences 2010; 7: 2851-2899
  • 2 Arrieta JM, Arnaud-Haond S, Duarte CM. What lies underneath: conserving the oceansʼ genetic resources. Proc Natl Acad Sci U S A 2010; 107: 18318-18324
  • 3 Gage JD, Tyler PA. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge, UK: Cambridge University Press; 1991: 1-504
  • 4 Hagiwara H, Numata M, Konishi K, Oka Y. Synthesis of nereistoxin and related compounds. I. Chem Pharm Bull (Tokyo) 1965; 13: 253-260
  • 5 Ruggieri GD. Drugs from the Sea. Science 1976; 194: 491-497
  • 6 Suckling CJ. Chemical approaches to the discovery of new drugs. Sci Prog 1991; 75: 323-359
  • 7 Newman DJ, Cragg GM, Snader KM. The influence of natural products upon drug discovery. Nat Prod Rep 2000; 17: 215-234
  • 8 Bergmann W, Feeney RJ. Isolation of a new thymine pentoside from sponges. J Am Chem Soc 1950; 72: 2809-2810
  • 9 Bergmann W, Feeney RJ. Marine products. XXXII. The nucleosides of sponges. I. J Org Chem 1951; 16: 981-987
  • 10 Bergmann W, Burke DC. Marine products. XXXIX. The nucleosides of sponges. III. Spongothymidine and spongouridine. J Org Chem 1955; 20: 1501-1507
  • 11 Löwenberg B. Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood 2013; 121: 26-28
  • 12 Cimino G, De Rosa S, De Stefano S. Antiviral agents from a gorgonian, Eunicella cavolini . Experientia 1984; 40: 339-340
  • 13 Bertin MJ, Schwartz SL, Lee J, Korobeynikov A, Dorrestein PC, Gerwick L, Gerwick WH. Spongosine production by a Vibrio harveyi strain associated with the sponge Tectitethya crypta . J Nat Prod 2015; 78: 493-499
  • 14 Flahive E, Srirangam J. The dolastatins: novel antitumor agents from Dolabella auricularia . In: Cragg GM, Kingston DGI, Newman DJ, editors Anticancer agents from natural products. Boca Raton, FL: Taylor and Francis; 2005: 191-213
  • 15 Flahive E, Srirangam J. The dolastatins: novel antitumor agents from Dolabella auricularia . In: Cragg GM, Kingston DGI, Newman DJ, editors Anticancer agents from natural products. 2nd edition. Boca Raton, FL: Taylor and Francis; 2012: 263-289
  • 16 Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 2001; 64: 907-910
  • 17 Engene N, Tronholm A, Salvador-Reyes LA, Luesch H, Paul VJ. Caldora penicillata gen. nov., comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. J Phycol 2015; 51: 670-681
  • 18 Doronina SO, Mendelsohn BA, Bovee TD, Cerveny CG, Alley SC, Meyer DL, Oflazoglu E, Toki BE, Sanderson RJ, Zabinski RF, Wahl AF, Senter PD. Enhanced activity of monomethylauristatin F through monoclonal antibody delivery: effects of linker technology on efficacy and toxicity. Bioconjug Chem 2006; 17: 114-124
  • 19 Copeland A, Younes A. Brentuximab vedotin. Anti-CD30 antibody-drug conjugate, oncolytic. Drugs Fut 2010; 35: 797-801
  • 20 Ansell SM. Brentuximab vedotin: delivering an antimitotic drug to activated lymphoma cells. Expert Opin Investig Drugs 2011; 20: 99-105
  • 21 Haddley K. Brentuximab vedotin: its role in the treatment of anaplastic large cell and Hodgkinʼs lymphoma. Drugs Today (Barc) 2012; 48: 259-270
  • 22 Newland AM, Li JX, Wasco LE, Aziz MT, Lowe DK. Brentuximab vedotin: a CD30-directed antibody-cytotoxic drug conjugate. Pharmacotherapy 2013; 33: 93-104
  • 23 Newman DJ, Cragg GM. Marine-sourced anti-cancer and cancer pain control agents in clinical and late preclinical development. Mar Drugs 2014; 12: 255-278
  • 24 Smaglo BG, Aldeghaither D, Weiner LM. The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol 2014; 11: 637-648
  • 25 Tse KF, Jeffers M, Pollack VA, McCabe DA, Shadish ML, Khramtsov NV, Hackett CS, Shenoy SG, Kuang B, Boldog FL, MacDougall JR, Rastelli L, Herrmann J, Gallo M, Gazit-Bornstein G, Senter PD, Meyer DL, Lichenstein HS, LaRochelle WJ. CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin Cancer Res 2006; 12: 1373-1382
  • 26 Pollack VA, Alvarez E, Tse KF, Torgov MY, Xie S, Shenoy SG, MacDougall JR, Arrol S, Zhong H, Gerwien RW, Hahne WF, Senter PD, Jeffers ME, Lichenstein HS, LaRochelle WJ. Treatment parameters modulating regression of human melanoma xenografts by an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother Pharmacol 2007; 60: 423-435
  • 27 Rose AA, Grosset AA, Dong Z, Russo C, Macdonald PA, Bertos NR, St-Pierre Y, Simantov R, Hallett M, Park M, Gaboury L, Siegel PM. Glycoprotein nonmetastatic B is an independent prognostic indicator of recurrence and a novel therapeutic target in breast cancer. Clin Cancer Res 2010; 16: 2147-2156
  • 28 Zhou LT, Liu FY, Li Y, Peng YM, Liu YH, Li J. Gpnmb/osteoactivin, an attractive target in cancer immunotherapy. Neoplasma 2012; 59: 1-5
  • 29 Vaklavas C, Forero A. Management of metastatic breast cancer with second-generation antibody-drug conjugates: focus on glembatumumab vedotin (CDX-011, CR011-vcMMAE). BioDrugs 2014; 28: 253-263
  • 30 Bendell J, Saleh M, Rose AA, Siegel PM, Hart L, Sirpal S, Jones S, Green J, Crowley E, Simantov R, Keler T, Davis T, Vahdat L. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with locally advanced or metastatic breast cancer. J Clin Oncol 2014; 32: 3619-3625
  • 31 Yardley DA, Weaver R, Melisko ME, Saleh MN, Arena FP, Forero A, Cigler T, Stopeck A, Citrin D, Oliff I, Bechhold R, Loutfi R, Garcia AA, Cruickshank S, Crowley E, Green J, Hawthorne T, Yellin MJ, Davis TA, Vahdat LT. EMERGE: A Randomized Phase II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Advanced Glycoprotein NMB-Expressing Breast Cancer. J Clin Oncol 2015; 33: 1609-1619
  • 32 Ott PA, Hamid O, Pavlick AC, Kluger H, Kim KB, Boasberg PD, Simantov R, Crowley E, Green JA, Hawthorne T, Davis TA, Sznol M, Hwu P. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J Clin Oncol 2014; 32: 3659-3666
  • 33 Li D, Poon KA, Yu SF, Dere R, Go M, Lau J, Zheng B, Elkins K, Danilenko D, Kozak KR, Chan P, Chuh J, Shi X, Nazzal D, Fuh F, McBride J, Ramakrishnan V, de Tute R, Rawstron A, Jack AS, Deng R, Chu YW, Dornan D, Williams M, Ho W, Ebens A, Prabhu S, Polson AG. DCDT2980 S, an anti-CD22-monomethyl auristatin E antibody-drug conjugate, is a potential treatment for non-Hodgkin lymphoma. Mol Cancer Ther 2013; 12: 1255-1265
  • 34 Gordon MS, Gerber DE, Infante JR, Xu J, Shames DS, Choi Y, Kahn RS, Lin K, Wood K, Maslyar DJ, Burris HA. A phase I study of the safety and pharmacokinetics of DNIB0600 A, an anti-NaPi2b antibody-drug-conjugate (ADC), in patients (pts) with non-small cell lung cancer (NSCLC) and platinum-resistant ovarian cancer (OC). J Clin Oncol 2013; 31: Abstr. 2507
  • 35 Lin K, Sukumaran S, Xu J, Zhang C, Choi Y, Yu S, Polakis P, Maslyar D. Translational PKPD of DNIB0600 A, an anti-Napi2b-vc-MMAE ADC in ovarian and NSCLC cancers. Ann Oncol 2014; 25: Abstr. 1598P
  • 36 Bhakta S, Junutula JR. Cysteine engineered antibodies and conjugates.. US Patent 2011/0301334 A1, 07.06.2011
  • 37 Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR, Fourie A, Chuh J, Koppada N, Saad O, Gill H, Shen BQ, Rubinfeld B, Tibbitts J, Kaur S, Theil FP, Fielder PJ, Khawli LA, Lin K. Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug Chem 2011; 22: 1994-2004
  • 38 Lin K, Tibbitts J. Pharmacokinetic considerations for antibody drug conjugates. Pharm Res 2012; 29: 2354-2366
  • 39 Danila DC, Szmulewitz RZ, Higano CS, Gilbert H, Kahn RS, Wood K, Agarwal P, Lin K, Kabbarah O, Fine BM, Maslyar DJ, Vaishampayan UN. A phase I study of the safety and pharmacokinetics of DSTP3086 S, an anti-STEAP1 antibody-drug conjugate (ADC), in patients (pts) with metastatic castration-resistant prostate cancer (CRPC). J Clin Oncol 2013; 31: Abstr. 5020
  • 40 Danila DC, Szmulewitz RZ, Baron AD, Higano CS, Scher HI, Morris MJ, Gilbert H, Brunstein F, Lemahieu V, Kabbarah O, Fine BM, Maslyar DJ, Vaishampayan UN. A phase I study of DSTP3086 S, an antibody-drug conjugate (ADC) targeting STEAP-1, in patients (pts) with metastatic castration-resistant prostate cancer (CRPC). J Clin Oncol 2014; 32: Abstr. 5024
  • 41 Sigel MM, Wellham LL, Lichter W, Dudeck LE, Gargus JL, Lucas LH. Anticellular and antitumor activity of extracts from tropical marine invertebrates. In: Youngken jr. HW, editor Food-drugs from the sea: proceedings 1969. Washington, D.C.: Marine Technology Society; 1970: 281-294
  • 42 Holt TG. The isolation and structural characterization of the ecteinascidins [dissertation]. Urbana-Champaign: University of Illinois; 1986
  • 43 Rinehart K, Holt TG, Fregeau NL, Stroh JG, Kiefer PA, Sun F, Li LH, Martin DG. Ecteinascidins 729, 743, 745, 759 A, 759B and 770: potent antitumor agents from the Caribbean tunicate Ecteinascidia turbinata . J Org Chem 1990; 55: 4512-4515
  • 44 Wright AE, Forleo DA, Gunawardana GP, Gunasekera SP, Koehn FE, McConnell OJ. Antitumor tetrahydroisoquinoline alkaloids from the colonial ascidian Ecteinascidia turbinata . J Org Chem 1990; 55: 4508-4512
  • 45 Cuevas C, Francesch A. Development of Yondelis® (trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep 2009; 26: 322-337
  • 46 Cuevas C, Francesch A, Galmarini CM, Aviles P, Munt S. Ecteinascidin-743 (Yondelis®), Aplidin®, and Irvalec®. In: Cragg GM, Kingston DGI, Newman DJ, editors Anticancer agents from natural products. 2nd edition. Boca Raton, FL: Taylor and Francis; 2012: 291-316
  • 47 Soares DG, Escargueil AE, Poindessous V, Sarasin A, de Gramont A, Bonatto D, Henriques JAP, Larsen AK. Replication and homologous recombination repair regulate DNA double-strand break formation by the antitumor alkylator ecteinascidin 743. Proc Natl Acad Sci U S A 2007; 04: 13062-13067
  • 48 DʼIncalci M, Badri N, Galmarini CM, Allavena P. Trabectedin, a drug acting on both cancer cells and the tumour microenvironment. Br J Cancer 2014; 111: 646-650
  • 49 Martínez S, Pérez L, Galmarini CM, Aracil M, Tercero JC, Gago F, Albella B, Bueren JA. Inhibitory effects of marine-derived DNA-binding anti-tumour tetrahydroisoquinolines on the Fanconi anaemia pathway. Br J Pharmacol 2013; 170: 871-882
  • 50 Romano M, Frapolli R, Zangarini M, Bello E, Porcu L, Galmarini CM, Garcia-Fernandez LF, Cuevas C, Allavena P, Erba E, DʼIncalci M. Comparison of in vitro and in vivo biological effects of trabectedin, lurbinectedin (PM01183) and Zalypsis® (PM00104). Int J Cancer 2013; 133: 2024-2033
  • 51 Martín MJ, Rodríguez-Acebes R, García-Ramos Y, Martínez V, Murcia C, Digón I, Marco I, Pelay-Gimeno M, Fernández R, Reyes F, Francesch AM, Munt S, Tulla-Puche J, Albericio F, Cuevas C. Stellatolides, a new cyclodepsipeptide family from the sponge Ecionemia acervus: isolation, solid-phase total synthesis, and full structural assignment of stellatolide A. J Am Chem Soc 2014; 136: 6754-6762
  • 52 Yap TA, Cortes-Funes H, Shaw H, Rodriguez R, Olmos D, Lal R, Fong PC, Tan DS, Harris D, Capdevila J, Coronado C, Alfaro V, Soto-Matos A, Fernández-Teruel C, Siguero M, Tabernero JM, Paz-Ares L, de Bono JS, López-Martin JA. First-in-man phase I trial of two schedules of the novel synthetic tetrahydroisoquinoline alkaloid PM00104 (Zalypsis) in patients with advanced solid tumours. Br J Cancer 2012; 106: 1379-1385
  • 53 Giddings LA, Newman DJ. Microbial natural products: molecular blueprints for antitumor drugs. J Ind Microbiol Biotechnol 2013; 40: 1181-1210
  • 54 Schofield MM, Jain S, Porat D, Dick GJ, Sherman DH. Identification and analysis of the bacterial endosymbiont specialized for production of the chemotherapeutic natural product ET-743. Environ Microbiol 2015; 17: 3964-3975
  • 55 Wilson MC, Mori T, Ruckert C, Uria AR, Helf MJ, Takada K, Gernert C, Steffens UAE, Heycke N, Schmitt S, Rinke C, Helfrich EJN, Brachmann AO, Gurgui C, Wakimoto T, Kracht M, Crusemann M, Hentschel U, Abe I, Matsunaga S, Kalinowski J, Takeyama H, Piel J. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 2014; 506: 58-62
  • 56 Leal JF, Martínez-Díez M, García-Hernández V, Moneo V, Domingo A, Bueren-Calabuig JA, Negri A, Gago F, Guillén-Navarro MJ, Avilés P, Cuevas C, García-Fernández LF, Galmarini CM. PM01183, a new DNA minor groove covalent binder with potent in vitro and in vivo anti-tumour activity. Br J Pharmacol 2010; 161: 1099-1110
  • 57 Soares DG, Machado MS, Rocca CJ, Poindessous V, Ouaret D, Sarasin A, Galmarini CM, Henriques JA, Escargueil AE, Larsen AK. Trabectedin and its C subunit modified analogue PM01183 attenuate nucleotide excision repair and show activity toward platinum-resistant cells. Mol Cancer Ther 2011; 10: 1481-1489
  • 58 Fontana A, Cavaliere P, Wahidullah S, Naik CG, Cimino G. A new antitumor isoquinoline alkaloid from the marine numdibranch Jorunna funebris . Tetrahedron 2000; 56: 7305-7308
  • 59 Saito N, Tanaka C, Koizumi YI, Suwanborirux K, Amnuoypol S, Pummangura S, Kubo A. Chemistry of renieramycins. Part 6: Transformation of renieramycin M into jorumycin and renieramycin J including oxidative degradation products, mimosamycin, renierone, and renierol acetate. Tetrahedron 2004; 60: 3873-3881
  • 60 Cuevas C, Perez M, Francesch A, Fernandez C, Chicharro JL, Gallego P, Zarzuelo M, De la Calle F, Manzanares I. Preparation of ecteinascidin analogs as antitumor agents. Assignee: Pharma Mar, S. A., Spain; Ruffles, Graham Keith. Patent Information: 23.11.2000 WO2000069862A2
  • 61 Leal JF, Garcia-Hernandez V, Moneo V, Domingo A, Bueren-Calabuig JA, Negri A, Gago F, Gulillen-Navarro MJ, Aviles P, Cuevas C, Garcia-Fernandez LF, Galimarini CM. Molecular pharmacology and antitumor activity of Zalypsis® in several human cell lines. Biochem Pharmacol 2009; 78: 162-170
  • 62 Aicher TD, Buszek KR, Fang FG, Forsyth CJ, Jung SH, Kishi Y, Matelich MC, Scola PM, Spero DM, Yoon SK. Total synthesis of halichondrin B and norhalichondrin B. J Am Chem Soc 1992; 114: 3162-3164
  • 63 Yu MJ, Kishi Y, Littlefield BA. Discovery of E7389, a fully synthetic macrocyclic ketone analog of halichondrin B. In: Cragg GM, Kingston DGI, Newman DJ, editors Anticancer agents from natural products. Boca Raton, FL: Taylor and Francis; 2005: 241-265
  • 64 Jordan MA, Kamath K, Manna T, Okouneva T, Miller HP, Davis C, Littlefield BA, Wilson L. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Ther 2005; 4: 1086-1095
  • 65 Jordan MA, Kamath K. How do microtubule-targeted drugs work? An overview. Curr Cancer Drug Targets 2007; 7: 730-742
  • 66 Okouneva T, Azarenko O, Wilson L, Littlefield BA, Jordan MA. Inhibition of centromere dynamics by Eribulin (E7389) during mitotic metaphase. Mol Cancer Ther 2008; 7: 2003-2011
  • 67 Smith JA, Wilson L, Azarenko O, Zhu X, Lewis BM, Littlefield BA, Jordan MA. Eribulin binds at microtubule ends to a single site on tubulin to suppress dynamic instability. Biochemistry 2010; 49: 1331-1337
  • 68 Wang Y, Serradell N, Bolos J, Rosa E. Eribulin mesilate. Drugs Fut 2007; 32: 681-698
  • 69 Dong CG, Henderson JA, Kaburagi Y, Sasaki T, Kim DS, Kim JT, Urabe D, Guo H, Kishi Y. New syntheses of E7389 C14–C35 and halichondrin C14–C38 building blocks: reductive cyclization and oxy-Michael cyclization approaches. J Am Chem Soc 2009; 131: 15642-15646
  • 70 Kim DS, Dong CG, Kim JT, Guo H, Huang J, Tiseni PS, Kishi Y. New syntheses of E7389 C14–C35 and halichondrin C14–C38 building blocks: double-inversion approach. J Am Chem Soc 2009; 131: 15636-15641
  • 71 Yang YR, Kim DS, Kishi Y. Second generation synthesis of C27–C35 building block of E7389, a synthetic halichondrin analogue. Org Lett 2009; 11: 4516-4519
  • 72 Jackson KL, Henderson JA, Motoyoshi H, Phillips AJ. A total synthesis of Norhalichondrin B. Angew Chem Int Ed 2009; 48: 2346-2350
  • 73 Jackson KL, Henderson JA, Phillips AJ. The halichondrins and E7389. Chem Rev 2009; 109: 3044-3079
  • 74 Chase CE, Fang FG, Lewis BM, Wilkie GD, Schnaderbeck MJ, Zhu X. Process development of Halaven®: Synthesis of the C1–C13 fragment from d-(−)-gulono-1, 4-lactone. Synlett 2013; 24: 323-326
  • 75 Austad BC, Benayoud F, Calkins TL, Campagna S, Chase CE, Choi HW, Christ W, Costanzo R, Cutter J, Endo A, Fang FG, Hu Y, Lewis BM, Lewis MD, McKenna S, Noland TA, Orr JD, Pesant M, Schnaderbeck MJ, Wilkie GD, Abe T, Asai N, Asai Y, Kayano A, Kimoto Y, Komatsu Y, Kubota M, Kuroda H, Mizuno M, Nakamura T, Omae T, Ozeki N, Suzuki T, Takigawa T, Watanabe T, Yoshizawa K. Process development of Halaven®: Synthesis of the C14–C35 fragment via iterative Nozaki-Hiyama-Kishi reaction-Williamson ether cyclization. Synlett 2013; 24: 327-332
  • 76 Austad BC, Calkins TL, Chase CE, Fang FG, Horstmann TE, Hu Y, Lewis BM, Niu X, Noland TA, Orr JD, Schnaderbeck MJ, Zhang H, Asakawa N, Asai N, Chiba H, Hasebe T, Hoshino Y, Ishizuka H, Kajima T, Kayano A, Komatsu Y, Kubota M, Kuroda H, Miyazawa M, Tagami K, Watanabe T. Commercial manufacture of Halaven®: Chemoselective transformations en route to structurally complex macrocyclic ketones. Synlett 2013; 24: 333-337
  • 77 Yu MJ, Zheng W, Seletsky BM. From micrograms to grams: scale-up synthesis of eribulin mesylate. Nat Prod Rep 2013; 30: 1158-1164
  • 78 Narayan S, Carlson EM, Cheng H, Du H, Hu Y, Jiang Y, Lewis BM, Seletsky BM, Tendyke K, Zhang H, Zheng W, Littlefield BA, Towle MJ, Yu MJ. Novel second generation analogs of eribulin. Part I: Compounds containing a lipophilic C32 sidechain overcome P-glycoprotein susceptibility. Bioorg Med Chem Lett 2011; 21: 1630-1633
  • 79 Narayan S, Carlson EM, Cheng H, Condon K, Du H, Eckley S, Hu Y, Jiang Y, Kumar V, Lewis BM, Saxton P, Schuck E, Seletsky BM, Tendyke K, Zhang H, Zheng W, Littlefield BA, Towle MJ, Yu MJ. Novel second generation analogs of eribulin. Part II: Orally available and active against resistant tumors in vivo . Bioorg Med Chem Lett 2011; 21: 1634-1638
  • 80 Narayan S, Carlson EM, Cheng H, Condon K, Du H, Eckley S, Hu Y, Jiang Y, Kumar V, Lewis BM, Saxton P, Schuck E, Seletsky BM, Tendyke K, Zhang H, Zheng W, Littlefield BA, Towle MJ, Yu MJ. Novel second generation analogs of eribulin. Part III: Blood-brain barrier permeability and in vivo activity in a brain tumor model. Bioorg Med Chem Lett 2011; 21: 1639-1643
  • 81 Olivera BM, Gray WR, Zeikus R. Peptide neurotoxins from fish-hunting cone snails. Science 1985; 230: 1338-1343
  • 82 Olivera BM, Cruz LJ, de Santos V, LeCheminant GW, Griffin D, Zeikus R, McIntosh JM, Galyean R, Varga J, Gray WR, Rivier J. Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using omega-conotoxin from Conus magus venom. Biochemistry 1987; 26: 2086-2090
  • 83 Bowersox S, Tich N, Mayo M, Luther R. SNX-111. Drugs Fut 1998; 23: 152-160
  • 84 Brust A, Palant E, Croker DE, Colless B, Drinkwater R, Patterson B, Schroeder CI, Wilson D, Nielsen CK, Smith MT, Alewood D, Alewood PF, Lewis RJ. χ-Conopeptide pharmacophore development: toward a novel class of norepinephrine transporter inhibitor (Xen2174) for pain. J Med Chem 2009; 52: 6991-7002
  • 85 Sharpe IA, Palant E, Schroeder CI, Kaye DM, Adams DJ, Alewood PF, Lewis RJ. Inhibition of the norepinephrine transporter by the venom peptide chi-MrIA. Site of Action, Na+ dependence, and structure-activity relationship. J Biol Chem 2003; 278: 40317-40322
  • 86 Lewis RJ. Case study 1: development of the analgesic drugs Prialt® and Xen2174 from cone snail venoms. In: King GF, editor Venoms to drugs: venom as a source for the development of human therapeutics. Abington, UK: Marston; 2015: 245-254
  • 87 Jayamanne A, Jeong HJ, Schroeder CJ, Lewis RJ, Christie MJ, Vaughan CW. Spinal actions of omega-conotoxins, CVID, MVIIA and related peptides in a rat neuropathic pain model. Br J Pharmacol 2013; 170: 245-254
  • 88 Daly NL, Craik DJ. Conopeptides as novel options for pain management. Drugs Future 2011; 36: 25-32
  • 89 Clark RJ, Jensen J, Nevin ST, Callaghan BP, Adams DJ, Craik DJ. The engineering of an orally active conotoxin for the treatment of neuropathic pain. Angew Chem Int Ed 2010; 49: 6545-6548
  • 90 Akondi KB, Muttenthaler M, Dutertre S, Kaas Q, Craik DJ, Lewis RJ, Alewood PF. Discovery, synthesis, and structure-activity relationships of conotoxins. Chem Rev 2014; 114: 5815-5847
  • 91 Teichert RW, Olivera BM, McIntosh JM, Bulaj G, Horvath MP. The molecular diversity of conoidean venom peptides and their targets: from basic research to therapeutic applications. In: King GF, editor Venoms to drugs: venom as a source for the development of human therapeutics. Abington, UK: Marston; 2015: 163-203
  • 92 Lavergne V, Alewood PF, Mobli M, King GF. The structural universe of disulfide-rich venom peptides. In: King GF, editor Venoms to drugs: venom as a source for the development of human therapeutics. Abington, UK: Marston; 2015: 37-79
  • 93 Andersen RJ, Williams DE, Strangman WE, Roberge M. HTI-286 (Taltobulin). A synthetic analog of the antimitotic natural product, hemiasterlin. In: Cragg GM, Kingston DGI, Newman DJ, editors Anticancer agents from natural products. 2nd edition. Boca Raton, FL: Taylor and Francis; 2012: 347-362
  • 94 Nieto FR, Cobos EJ, Tejada MÁ, Sánchez-Fernández C, González-Cano R, Cendán CM. Tetrodotoxin (TTX) as a therapeutic agent for pain. Mar Drugs 2012; 10: 281-305
  • 95 Turabi A, Plunkett AR. The application of genomic and molecular data in the treatment of chronic cancer pain. J Surg Oncol 2012; 105: 494-501
  • 96 Moczydlowski EG. The molecular mystique of tetrodotoxin. Toxicon 2013; 63: 165-183
  • 97 Chau R, Kalaitzis JA, Neilan BA. On the origins and biosynthesis of tetrodotoxin. Aquat Toxicol 2011; 104: 61-72
  • 98 Nishikawa T, Isobe M. Synthesis of tetrodotoxin, a classic but still fascinating natural product. Chem Rec 2013; 13: 286-302
  • 99 Bane V, Lehane M, Dikshit M, OʼRiordan A, Furey A. Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins (Basel) 2014; 6: 693-755
  • 100 Hoehne A, Behera D, Parsons WH, James ML, Shen B, Borgohain P, Bodapati D, Prabhakar A, Gambhir SS, Yeomans DC, Biswal S, Chin FT, Du Bois J. A 18 F-labeled saxitoxin derivative for in vivo PET-MR imaging of voltage-gated sodium channel expression following nerve injury. J Am Chem Soc 2013; 135: 18012-18015
  • 101 Thottumkara AP, Parsons WH, Du Bois J. Saxitoxin. Angew Chem Int Ed 2014; 53: 5760-5784
  • 102 Vera M, Joullie MM. Natural products as probes of cell biology: 20 years of didemnin research. Med Res Rev 2002; 22: 102-145
  • 103 Sakai R, Rinehart KL, Kishore V, Kundu B, Faircloth G, Gloer JB, Carney JR, Manikoshi M, Sun F, Hughes jr. RG, Garcia-Gravalos D, Garcia de Quesada T, Wilson GR, Heid RM. Structure-activity relationships of the didemnins. J Med Chem 1996; 9: 2819-2834
  • 104 Henriquez R, Faircloth G, Cuevas C. Ecteinascidin 743 (ET-743; Yondelis™), aplidin, and kahalalide F. In: Cragg GM, Kingston DGI, Newman DJ, editors Anticancer agents from natural products. Boca Raton, FL: Taylor and Francis; 2005: 215-240
  • 105 Munoz-Alonso MJ, Gonzalez-Santiago L, Martinez T, Losada A, Galmarini CM, Munoz A. The mechanism of action of plitidepsin. Curr Opin Investig Drugs 2009; 10: 536-542
  • 106 Galmarini CM, DʼIncalci M, Allavena P. Trabectedin and plitidepsin: drugs from the sea that strike the tumor microenvironment. Mar Drugs 2014; 12: 719-733
  • 107 García C, Losada A, Molina-Guijarro JM, Sacristán MA, Martinez J, Galmarini CM, Lillo MP. Interaction of plitidepsin with eEF1 A in living tumor cells. Eur J Cancer 2014; 50: 111-112
  • 108 Losada A, Martinez JF, Moral P, Carrasco L, Gago F, Cuevas C, García-Fernández LF, Galmarini CM. Aplidin: first in class compound targeting EEF1 A in tumor cells. Eur J Cancer 2014; 50: 108
  • 109 Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I. Targeting the translation machinery in cancer. Nat Rev Drug Discov 2015; 14: 261-278
  • 110 Chu J, Pelletier J. Targeting the eIF4 A RNA helicase as an anti-neoplastic approach. Biochim Biophys Acta 2015; 1849: 781-791
  • 111 Martín MJ, Coello L, Fernández R, Reyes F, Rodríguez A, Murcia C, Garranzo M, Mateo C, Sánchez-Sancho F, Bueno S, de Eguilior C, Francesch A, Munt S, Cuevas C. Isolation and first total synthesis of PM050489 and PM060184, two new marine anticancer compounds. J Am Chem Soc 2013; 135: 10164-10171
  • 112 Pera B, Barasoain I, Pantazopoulou A, Canales A, Matesanz R, Rodriguez-Salarichs J, García-Fernandez LF, Moneo V, Jimenez-Barbero J, Galmarini CM, Cuevas C, Penalva MA, Díaz JF, Andreu JMl. New interfacial microtubule inhibitors of marine origin, PM050489/PM060184, with potent antitumor activity and a distinct mechanism. ACS Chem Biol 2013; 8: 2084-2094
  • 113 Martínez-Díez M, Guillén-Navarro MJ, Pera B, Bouchet BP, Martínez-Leal JF, Barasoain I, Cuevas C, Andreu JM, García-Fernandez LF, Díaz JF, Avilés P, Galmarini CM. PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. Biochem Pharmacol 2014; 88: 291-302
  • 114 Aviles P, Guillen MJ, Lopez-Casas PP, Sarno F, Cataluna O, Nunez P, Cuevas C, Hidalgo M. Low, frequent doses of PM060184 induce remarkable in vivo antitumor activity. Eur J Cancer 2014; 50: 23
  • 115 Aviles PM, Guillen MJ, Dominguez JM, Munoz-Alonso J, Garcia-Fernandez LF, Garranzo M, Martinez V, Francesch A, Munt S, Galmarini CM, Cuevas C. MI130004, an antibody-drug conjugate including a novel payload of marine origin: Evidences of in vivo activity. Eur J Cancer 2014; 50: 164
  • 116 Coello L, Reyes F, Martín MJ, Cuevas C, Fernandez R. Isolation and structures of pipecolidepsins A and B, cytotoxic cyclic depsipeptides from the Madagascan sponge Homophymia lamellosa . J Nat Prod 2014; 77: 298-303
  • 117 Mayer AMS, Glaser KB, Cuevas C, Jacobs RS, Kem W, Little RD, McIntosh JM, Newman DJ, Potts BC, Shuster DE. The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci 2010; 31: 255-265
  • 118 Molina-Guijarro JM, Moneo V, Martinez-Leal JF, Cuevas C, Garcia-Fernandez LF, Galmarini CM. Pipecolidepsin A, Stellatolide A and Irvalec: New cyclodepsipeptides of marine origin with antitumor activity. Eur J Cancer 2014; 50: 24
  • 119 Fenical W, Jensen PR, Palladino MA, Lam KS, Lloyd GK, Potts BC. Discovery and development of the anticancer agent salinosporamide A (NPI-0052). Bioorg Med Chem 2009; 17: 2175-2180
  • 120 Lechner A, Eustáquio AS, Gulder TA, Hafner M, Moore BS. Selective overproduction of the proteasome inhibitor salinosporamide A via precursor pathway regulation. Chem Biol 2011; 18: 1527-1536
  • 121 Eustáquio AS, Nam SJ, Penn K, Lechner A, Wilson MC, Fenical W, Jensen PR, Moore BS. The discovery of salinosporamide K from the marine bacterium “Salinispora pacifica” by genome mining gives insight into pathway evolution. Chembiochem 2011; 12: 61-64
  • 122 Nguyen H, Ma G, Gladysheva T, Fremgen T, Romo D. Bioinspired total synthesis and human proteasome inhibitory activity of (−)-salinosporamide A, (−)-homosalinosporamide A, and derivatives obtained via organonucleophile promoted bis-cyclizations. J Org Chem 2011; 76: 2-12
  • 123 Jensen PR, Chavarria KL, Fenical W, Moore BS, Ziemert N. Challenges and triumphs to genomics-based natural product discovery. J Ind Microbiol Biotechnol 2014; 41: 203-209
  • 124 Goo KS, Tsuda M, Ulanova D. Salinispora arenicola from temperate marine sediments: new intra-species variations and atypical distribution of secondary metabolic genes. Ant van Leeuwen 2014; 105: 207-219
  • 125 Hale KJ, Hummersone MC, Manaviazar S, Frigerio M. The chemistry and biology of the bryostatin antitumour macrolides. Nat Prod Rep 2002; 19: 413-453
  • 126 Hale KJ, Manaviazar S. New approaches to the total synthesis of the bryostatin antitumor macrolides. Chem Asian J 2010; 5: 704-754
  • 127 Lin H, Yao X, Yi Y, Li X, Wu H. Bryostatin 19: A new antineoplastic compound from Bugula neritina in South China sea. Zhongguo Haiyang Yaowu 1998; 17: 1-3
  • 128 Lin H, Liu G, Yi Y, Yao X, Wu H. Studies on antineoplastic constituents from marine bryozoan Bugula neritina inhabiting South China sea: isolation and structural elucidation of a novel macrolide. Dier Junyi Daxue Xuebao 2004; 25: 473-478
  • 129 Lopanik N, Gustafson KR, Lindquist N. Structure of bryostatin 20: a symbiont-produced chemical defense for larvae of the host bryozoan, Bugula neritina . J Nat Prod 2004; 67: 1412-1414
  • 130 Yu HB, Yang F, Li YY, Gan JH, Jiao WH, Lin HW. Cytotoxic bryostatin derivatives from the South China Sea bryozoan Bugula neritina . J Nat Prod 2015; 78: 1169-1173
  • 131 Keck GE, Poudel YB, Cummins TJ, Rudra A, Covel JA. Total synthesis of bryostatin 1. J Am Chem Soc 2011; 133: 744-747
  • 132 Manaviazar S, Hale KJ. Total synthesis of bryostatin 1: a short route. Angew Chem Int Ed 2011; 50: 8786-8789
  • 133 Trost BM, Yang H, Brindle CS, Dong G. Atom-economic and stereoselective syntheses of the ring A and B subunits of the bryostatins. Chemistry 2011; 17: 9777-9788
  • 134 Trost BM, Yang H, Dong G. Total syntheses of bryostatins: synthesis of two ring-expanded bryostatin analogues and the development of a new-generation strategy to access the C7–C27 fragment. Chemistry 2011; 17: 9789-9805
  • 135 Trindade-Silva AE, Lim-Fong GE, Sharp KH, Haygood MG. Bryostatins: biological context and biotechnological prospects. Curr Opin Biotechnol 2010; 21: 834-842
  • 136 Keck GE, Kraft MB, Truong AP, Li W, Sanchez CC, Kedei N, Lewin NE, Blumberg PM. Convergent assembly of highly potent analogues of bryostatin 1 via pyran annulation: Bryostatin look-alikes that mimic phorbol ester function. J Am Chem Soc 2008; 130: 6660-6661
  • 137 Wender PA, Baryza JL, Brenner SE, DeChristopher BA, Loy BA, Schrier AJ, Verma VA. Design, synthesis, and evaluation of potent bryostatin analogs that modulate PKC translocation selectivity. Proc Natl Acad Sci U S A 2011; 108: 6721-6726
  • 138 Wender PA, Reuber J. Function oriented synthesis: preparation and initial biological evaluation of new A-ring-modified bryologs. Tetrahedron 2011; 67: 9998-10005
  • 139 Newman DJ. The bryostatins. In: Cragg GM, Kingston DGI, Newman DJ, editors Anticancer agents from natural products. 2nd edition. Boca Raton, FL: Taylor and Francis; 2012: 199-218
  • 140 Kedei N, Lewin NE, Géczy T, Selezneva J, Braun DC, Chen J, Herrmann MA, Heldman MR, Lim L, Mannan P, Garfield SH, Poudel YB, Cummins TJ, Rudra A, Blumberg PM, Keck GE. Biological profile of the less lipophilic and synthetically more accessible bryostatin 7 closely resembles that of bryostatin 1. ACS Chem Biol 2013; 8: 767-777
  • 141 DeChristopher BA, Loy BA, Marsden MD, Schrier AJ, Zack JA, Wender PA. Designed, synthetically accessible bryostatin analogues potently induce activation of latent HIV reservoirs in vitro . Nat Chem 2012; 4: 705-710
  • 142 Newman DJ. Bryostatin-from bryozoan to cancer drug. In: Gordon DP, Smith AM, Grant-Mackie JA, editors Bryozoans in space and time. Wellington, NZ: NIWA; 1996: 9-17
  • 143 Mori T, OʼKeefe BR, Sowder 2nd RC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit jr. RW, McMahon JB, Boyd MR. Isolation and characterization of Griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 2005; 280: 9345-9353
  • 144 Ziółkowska NE, Shenoy SR, OʼKeefe BR, Wlodawer A. Crystallographic studies of the complexes of antiviral protein griffithsin with glucose and N-acetylglucosamine. Protein Sci 2007; 16: 1485-1489
  • 145 OʼKeefe BR, Vojdani F, Buffa V, Shattock RJ, Montefiori DC, Bakke J, Mirsalis J, dʼAndrea AL, Hume SD, Bratcher B, Saucedo CJ, McMahon JB, Pogue GP, Palmer KE. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc Natl Acad Sci U S A 2009; 106: 6099-6104
  • 146 Takebe Y, Saucedo CJ, Lund G, Uenishi R, Hase S, Tsuchiura T, Kneteman N, Ramessar K, Tyrrell DLJ, Shirakura M, Wakita T, McMahon JB, OʼKeefe BR. Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus. PLoS One 2013; 8: e64449
  • 147 Barton C, Kouokam JC, Lasnik AB, Foreman O, Cambon A, Brock G, Montefiori DC, Vojdani F, McCormick AA, OʼKeefe BR, Palmer KE. Activity of and effect of subcutaneous treatment with the broad-spectrum antiviral lectin griffithsin in two laboratory rodent models. Antimicrob Agents Chemother 2014; 58: 120-127
  • 148 Dixit RB, Suseela MR. Cyanobacteria: potential candidates for drug discovery. Ant van Leeuwen 2013; 103: 947-961
  • 149 Winnikoff JR, Glukhov E, Watrous J, Dorrestein PC, Gerwick WH. Quantitative molecular networking to profile marine cyanobacterial metabolomes. J Antibiot (Tokyo) 2014; 67: 105-112
  • 150 Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, Duggan BM, Di Marzo V, Sherman DH, Dorrestein PC, Gerwick L, Gerwick WH. Combining Mass Spectrometric Metabolic Profiling with Genomic Analysis: A Powerful Approach for Discovering Natural Products from Cyanobacteria. J Nat Prod 2015; 78: 1671-1682
  • 151 Ng TB, Cheung RC, Wong JH, Bekhit AA, Bekhit Ael-D. Antibacterial products of marine organisms. Appl Microbiol Biotechnol 2015; 99: 4145-4173
  • 152 Gerwick WH, Moore BS. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 2012; 19: 85-98