Semin Liver Dis 2022; 42(01): 001-016
DOI: 10.1055/s-0041-1742279
Review Article

The Role of Liver Zonation in Physiology, Regeneration, and Disease

Regeant Panday
1   Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
,
Chase P. Monckton
1   Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
,
Salman R. Khetani
1   Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
› Author Affiliations
Funding C.P.M., R.P., and S.R.K. report grants: US NIH, 1R01DK115747–01A1.


Abstract

As blood flows from the portal triad to the central vein, cell-mediated depletion establishes gradients of soluble factors such as oxygen, nutrients, and hormones, which act through molecular pathways (e.g., Wnt/β-catenin, hedgehog) to spatially regulate hepatocyte functions along the sinusoid. Such “zonation” can lead to the compartmentalized initiation of several liver diseases, including alcoholic/non-alcoholic fatty liver diseases, chemical/drug-induced toxicity, and hepatocellular carcinoma, and can also modulate liver regeneration. Transgenic rodent models provide valuable information on the key molecular regulators of zonation, while in vitro models allow for subjecting cells to precisely controlled factor gradients and elucidating species–specific differences in zonation. Here, we discuss the latest advances in both in vivo and in vitro models of liver zonation and pending questions to be addressed moving forward. Ultimately, obtaining a deeper understanding of zonation can lead to the development of more effective therapeutics for liver diseases, microphysiological systems, and scalable cell-based therapies.

Data Availability

Data sharing is not applicable to this article as no new data was created or analyzed in this study.




Publication History

Article published online:
04 February 2022

© 2022. Thieme. All rights reserved.

Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA

 
  • References

  • 1 Halpern KB, Shenhav R, Matcovitch-Natan O. et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017; 542 (7641): 352-356
  • 2 Kietzmann T. Metabolic zonation of the liver: the oxygen gradient revisited. Redox Biol 2017; 11: 622-630
  • 3 Cheng X, Kim SY, Okamoto H. et al. Glucagon contributes to liver zonation. Proc Natl Acad Sci U S A 2018; 115 (17) E4111-E4119
  • 4 Zeng G, Awan F, Otruba W. et al. Wnt'er in liver: expression of Wnt and frizzled genes in mouse. Hepatology 2007; 45 (01) 195-204
  • 5 Benhamouche S, Decaens T, Godard C. et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev Cell 2006; 10 (06) 759-770
  • 6 Burke ZD, Reed KR, Phesse TJ, Sansom OJ, Clarke AR, Tosh D. Liver zonation occurs through a beta-catenin-dependent, c-Myc-independent mechanism. Gastroenterology 2009; 136 (07) 2316-2324.e1 , 3
  • 7 Yang J, Mowry LE, Nejak-Bowen KN. et al. β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation!. Hepatology 2014; 60 (03) 964-976
  • 8 Sekine S, Lan BY, Bedolli M, Feng S, Hebrok M. Liver-specific loss of beta-catenin blocks glutamine synthesis pathway activity and cytochrome p450 expression in mice. Hepatology 2006; 43 (04) 817-825
  • 9 Braeuning A, Schwarz M. Zonation of heme synthesis enzymes in mouse liver and their regulation by β-catenin and Ha-ras. Biol Chem 2010; 391 (11) 1305-1313
  • 10 Giera S, Braeuning A, Köhle C. et al. Wnt/beta-catenin signaling activates and determines hepatic zonal expression of glutathione S-transferases in mouse liver. Toxicol Sci 2010; 115 (01) 22-33
  • 11 Rocha AS, Vidal V, Mertz M. et al. The Angiocrine factor rspondin3 is a key determinant of liver zonation. Cell Rep 2015; 13 (09) 1757-1764
  • 12 Planas-Paz L, Orsini V, Boulter L. et al. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat Cell Biol 2016; 18 (05) 467-479
  • 13 Matz-Soja M, Hovhannisyan A, Gebhardt R. Hedgehog signalling pathway in adult liver: a major new player in hepatocyte metabolism and zonation?. Med Hypotheses 2013; 80 (05) 589-594
  • 14 Matz-Soja M, Aleithe S, Marbach E. et al. Hepatic Hedgehog signaling contributes to the regulation of IGF1 and IGFBP1 serum levels. Cell Commun Signal 2014; 12: 11
  • 15 Hazel SJ, Nordqvist AC, Hall K, Nilsson M, Schalling M. Differential expression of IGF-I and IGF-binding protein-1 and -2 in periportal and perivenous zones of rat liver. J Endocrinol 1998; 157 (02) 285-294
  • 16 Kolbe E, Aleithe S, Rennert C. et al. Mutual zonated interactions of Wnt and Hh signaling are orchestrating the metabolism of the adult liver in mice and human. Cell Rep 2019; 29 (13) 4553-4567.e7
  • 17 Wei K, Piecewicz SM, McGinnis LM. et al. A liver Hif-2α-IRS2 pathway sensitizes hepatic insulin signaling and is modulated by VEGF inhibition. Nat Med 2013; 19 (10) 1331-1337
  • 18 Scharf JG, Unterman TG, Kietzmann T. Oxygen-dependent modulation of insulin-like growth factor binding protein biosynthesis in primary cultures of rat hepatocytes. Endocrinology 2005; 146 (12) 5433-5443
  • 19 Näthke I, Rocha S. Antagonistic crosstalk between APC and HIF-1α. Cell Cycle 2011; 10 (10) 1545-1547
  • 20 Newton IP, Kenneth NS, Appleton PL, Näthke I, Rocha S. Adenomatous polyposis coli and hypoxia-inducible factor-1alpha have an antagonistic connection. Mol Biol Cell 2010; 21 (21) 3630-3638
  • 21 Mazumdar J, O'Brien WT, Johnson RS. et al. O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 2010; 12 (10) 1007-1013
  • 22 Bijlsma MF, Groot AP, Oduro JP. et al. Hypoxia induces a hedgehog response mediated by HIF-1alpha. J Cell Mol Med 2009; 13 (8B): 2053-2060
  • 23 Onishi H, Yamasaki A, Kawamoto M, Imaizumi A, Katano M. Hypoxia but not normoxia promotes smoothened transcription through upregulation of RBPJ and Mastermind-like 3 in pancreatic cancer. Cancer Lett 2016; 371 (02) 143-150
  • 24 Chen S, Zhang M, Xing L, Wang Y, Xiao Y, Wu Y. HIF-1α contributes to proliferation and invasiveness of neuroblastoma cells via SHH signaling. PLoS One 2015; 10 (03) e0121115
  • 25 Hailfinger S, Jaworski M, Braeuning A, Buchmann A, Schwarz M. Zonal gene expression in murine liver: lessons from tumors. Hepatology 2006; 43 (03) 407-414
  • 26 Braeuning A, Menzel M, Kleinschnitz EM. et al. Serum components and activated Ha-ras antagonize expression of perivenous marker genes stimulated by beta-catenin signaling in mouse hepatocytes. FEBS J 2007; 274 (18) 4766-4777
  • 27 Colletti M, Cicchini C, Conigliaro A. et al. Convergence of Wnt signaling on the HNF4alpha-driven transcription in controlling liver zonation. Gastroenterology 2009; 137 (02) 660-672
  • 28 Gougelet A, Torre C, Veber P. et al. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice. Hepatology 2014; 59 (06) 2344-2357
  • 29 Sekine S, Ogawa R, Mcmanus MT, Kanai Y, Hebrok M. Dicer is required for proper liver zonation. J Pathol 2009; 219 (03) 365-372
  • 30 Asrani SK, Devarbhavi H, Eaton J, Kamath PS. Burden of liver diseases in the world. J Hepatol 2019; 70 (01) 151-171
  • 31 Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 2009; 19 (04) 291-302
  • 32 Brunt EM. Pathology of fatty liver disease. Mod Pathol 2007; 20 (Suppl. 01) S40-S48
  • 33 Chalasani N, Wilson L, Kleiner DE, Cummings OW, Brunt EM, Unalp A. NASH Clinical Research Network. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J Hepatol 2008; 48 (05) 829-834
  • 34 Wattacheril J, Seeley EH, Angel P. et al. Differential intrahepatic phospholipid zonation in simple steatosis and nonalcoholic steatohepatitis. PLoS One 2013; 8 (02) e57165
  • 35 Hall Z, Bond NJ, Ashmore T. et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology 2017; 65 (04) 1165-1180
  • 36 Liu H, Fergusson MM, Wu JJ. et al. Wnt signaling regulates hepatic metabolism. Sci Signal 2011; 4 (158) ra6
  • 37 Behari J, Li H, Liu S. et al. β-catenin links hepatic metabolic zonation with lipid metabolism and diet-induced obesity in mice. Am J Pathol 2014; 184 (12) 3284-3298
  • 38 Schleicher J, Tokarski C, Marbach E. et al. Zonation of hepatic fatty acid metabolism—the diversity of its regulation and the benefit of modeling. Biochim Biophys Acta 2015; 1851 (05) 641-656
  • 39 Choi SS, Omenetti A, Witek RP. et al. Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. Am J Physiol Gastrointest Liver Physiol 2009; 297 (06) G1093-G1106
  • 40 Rangwala F, Guy CD, Lu J. et al. Increased production of sonic hedgehog by ballooned hepatocytes. J Pathol 2011; 224 (03) 401-410
  • 41 Matz-Soja M, Rennert C, Schönefeld K. et al. Hedgehog signaling is a potent regulator of liver lipid metabolism and reveals a GLI-code associated with steatosis. eLife 2016; 5: 5
  • 42 Rehm J, Shield KD. Global burden of alcohol use disorders and alcohol liver disease. Biomedicines 2019; 7 (04) 7
  • 43 Yoon YH, Chen CM, Slater ME, Jung MK, White AM. Trends in premature deaths from alcoholic liver disease in the U.S., 1999-2018. Am J Prev Med 2020; 59 (04) 469-480
  • 44 Seitz HK, Bataller R, Cortez-Pinto H. et al. Alcoholic liver disease. Nat Rev Dis Primers 2018; 4 (01) 16
  • 45 Beier JI, McClain CJ. Mechanisms and cell signaling in alcoholic liver disease. Biol Chem 2010; 391 (11) 1249-1264
  • 46 Sokal EM, Collette E, Buts JP. Continuous increase of alcohol dehydrogenase activity along the liver plate in normal and cirrhotic human livers. Hepatology 1993; 17 (02) 202-205
  • 47 Guzman M, Castro J. Zonal heterogeneity of the effects of chronic ethanol feeding on hepatic fatty acid metabolism. Hepatology 1990; 12 (05) 1098-1105
  • 48 Hijmans BS, Grefhorst A, Oosterveer MH, Groen AK. Zonation of glucose and fatty acid metabolism in the liver: mechanism and metabolic consequences. Biochimie 2014; 96: 121-129
  • 49 Zhang P, Wang W, Mao M. et al. Similarities and differences: a comparative review of the molecular mechanisms and effectors of NAFLD and AFLD. Front Physiol 2021; 12: 710285
  • 50 Wahlicht T, Vièyres G, Bruns SA. et al. Controlled functional zonation of hepatocytes in vitro by engineering of Wnt signaling. ACS Synth Biol 2020; 9 (07) 1638-1649
  • 51 Vassilaki N, Kalliampakou KI, Kotta-Loizou I. et al. Low oxygen tension enhances hepatitis C virus replication. J Virol 2013; 87 (05) 2935-2948
  • 52 Moreau M, Rivière B, Vegna S. et al. Hepatitis C viral proteins perturb metabolic liver zonation. J Hepatol 2015; 62 (02) 278-285
  • 53 Wang W, Pan Q, Fuhler GM, Smits R, Peppelenbosch MP. Action and function of Wnt/β-catenin signaling in the progression from chronic hepatitis C to hepatocellular carcinoma. J Gastroenterol 2017; 52 (04) 419-431
  • 54 Guidotti LG, Matzke B, Schaller H, Chisari FV. High-level hepatitis B virus replication in transgenic mice. J Virol 1995; 69 (10) 6158-6169
  • 55 Tarnow G, McLachlan A. β-catenin signaling regulates the in vivo distribution of hepatitis b virus biosynthesis across the liver lobule. J Virol 2021; 95 (20) e0078021
  • 56 von Olshausen G, Quasdorff M, Bester R. et al. Hepatitis B virus promotes β-catenin-signalling and disassembly of adherens junctions in a Src kinase dependent fashion. Oncotarget 2018; 9 (74) 33947-33960
  • 57 Désert R, Rohart F, Canal F. et al. Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology 2017; 66 (05) 1502-1518
  • 58 Thompson MD, Monga SP. WNT/beta-catenin signaling in liver health and disease. Hepatology 2007; 45 (05) 1298-1305
  • 59 Ding SL, Yang ZW, Wang J, Zhang XL, Chen XM, Lu FM. Integrative analysis of aberrant Wnt signaling in hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol 2015; 21 (20) 6317-6328
  • 60 Colnot S, Decaens T, Niwa-Kawakita M. et al. Liver-targeted disruption of Apc in mice activates beta-catenin signaling and leads to hepatocellular carcinomas. Proc Natl Acad Sci U S A 2004; 101 (49) 17216-17221
  • 61 Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2021; 18 (04) 223-238
  • 62 Machado MV, Diehl AM. Hedgehog signalling in liver pathophysiology. J Hepatol 2018; 68 (03) 550-562
  • 63 Chong YC, Lim TE, Fu Y, Shin EM, Tergaonkar V, Han W. Indian Hedgehog links obesity to development of hepatocellular carcinoma. Oncogene 2019; 38 (12) 2206-2222
  • 64 Huang H, Fujii H, Sankila A. et al. Beta-catenin mutations are frequent in human hepatocellular carcinomas associated with hepatitis C virus infection. Am J Pathol 1999; 155 (06) 1795-1801
  • 65 Lindros KO. Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver. Gen Pharmacol 1997; 28 (02) 191-196
  • 66 Yoon E, Babar A, Choudhary M, Kutner M, Pyrsopoulos N. Acetaminophen-Induced Hepatotoxicity: a comprehensive update. J Clin Transl Hepatol 2016; 4 (02) 131-142
  • 67 James LP, Mayeux PR, Hinson JA. Acetaminophen-induced hepatotoxicity. Drug Metab Dispos 2003; 31 (12) 1499-1506
  • 68 Means SA, Ho H. A spatial-temporal model for zonal hepatotoxicity of acetaminophen. Drug Metab Pharmacokinet 2019; 34 (01) 71-77
  • 69 Anundi I, Lähteenmäki T, Rundgren M, Moldeus P, Lindros KO. Zonation of acetaminophen metabolism and cytochrome P450 2E1-mediated toxicity studied in isolated periportal and perivenous hepatocytes. Biochem Pharmacol 1993; 45 (06) 1251-1259
  • 70 Miller DL, Harasin JM, Gumcio JJ. Bromobenzene-induced zonal necrosis in the hepatic acinus. Exp Mol Pathol 1978; 29 (03) 358-370
  • 71 Lee VM, Cameron RG, Archer MC. Zonal location of compensatory hepatocyte proliferation following chemically induced hepatotoxicity in rats and humans. Toxicol Pathol 1998; 26 (05) 621-627
  • 72 Heijne WH, Stierum RH, Slijper M, van Bladeren PJ, van Ommen B. Toxicogenomics of bromobenzene hepatotoxicity: a combined transcriptomics and proteomics approach. Biochem Pharmacol 2003; 65 (05) 857-875
  • 73 Sasse D, Maly IP. Studies on the periportal hepatotoxicity of allyl alcohol. Prog Histochem Cytochem 1991; 23 (1-4): 146-149
  • 74 Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. The origin and liver repopulating capacity of murine oval cells. Proc Natl Acad Sci U S A 2003; 100 (Suppl. 01) 11881-11888
  • 75 Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18 (01) 40-55
  • 76 Pu W, Zhang H, Huang X. et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun 2016; 7: 13369
  • 77 Wang B, Zhao L, Fish M, Logan CY, Nusse R. Self-renewing diploid Axin2(+) cells fuel homeostatic renewal of the liver. Nature 2015; 524 (7564): 180-185
  • 78 Lin S, Nascimento EM, Gajera CR. et al. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 2018; 556 (7700): 244-248
  • 79 Sun T, Pikiolek M, Orsini V. et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell 2020; 26 (01) 97-107.e6
  • 80 Tan X, Behari J, Cieply B, Michalopoulos GK, Monga SP. Conditional deletion of beta-catenin reveals its role in liver growth and regeneration. Gastroenterology 2006; 131 (05) 1561-1572
  • 81 Preziosi M, Okabe H, Poddar M, Singh S, Monga SP. Endothelial Wnts regulate β-catenin signaling in murine liver zonation and regeneration: a sequel to the Wnt-Wnt situation. Hepatol Commun 2018; 2 (07) 845-860
  • 82 Walesky CM, Kolb KE, Winston CL. et al. Functional compensation precedes recovery of tissue mass following acute liver injury. Nat Commun 2020; 11 (01) 5785
  • 83 Chen F, Jimenez RJ, Sharma K. et al. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 2020; 26 (01) 27-33.e4
  • 84 Wei Y, Wang YG, Jia Y. et al. Liver homeostasis is maintained by midlobular zone 2 hepatocytes. Science 2021; 371 (6532): 371
  • 85 Ghafoory S, Breitkopf-Heinlein K, Li Q, Scholl C, Dooley S, Wölfl S. Zonation of nitrogen and glucose metabolism gene expression upon acute liver damage in mouse. PLoS One 2013; 8 (10) e78262
  • 86 Zhao L, Jin Y, Donahue K. et al. Tissue repair in the mouse liver following acute carbon tetrachloride depends on injury-induced Wnt/β-catenin signaling. Hepatology 2019; 69 (06) 2623-2635
  • 87 Bell P, Wang L, Gao G. et al. Inverse zonation of hepatocyte transduction with AAV vectors between mice and non-human primates. Mol Genet Metab 2011; 104 (03) 395-403
  • 88 He L, Pu W, Liu X. et al. Proliferation tracing reveals regional hepatocyte generation in liver homeostasis and repair. Science 2021; 371 (6532): 371
  • 89 Font-Burgada J, Shalapour S, Ramaswamy S. et al. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 2015; 162 (04) 766-779
  • 90 Monckton CP, Brown GE, Khetani SR. Latest impact of engineered human liver platforms on drug development. APL Bioeng 2021; 5 (03) 031506
  • 91 Camp JP, Capitano AT. Induction of zone-like liver function gradients in HepG2 cells by varying culture medium height. Biotechnol Prog 2007; 23 (06) 1485-1491
  • 92 Tomlinson L, Hyndman L, Firman JW. et al. In vitro liver zonation of primary rat hepatocytes. Front Bioeng Biotechnol 2019; 7: 17
  • 93 DiProspero TJ, Dalrymple E, Lockett MR. Physiologically relevant oxygen tensions differentially regulate hepatotoxic responses in HepG2 cells. Toxicol In Vitro 2021; 74: 105156
  • 94 Gaskell H, Sharma P, Colley HE, Murdoch C, Williams DP, Webb SD. Characterization of a functional C3A liver spheroid model. Toxicol Res (Camb) 2016; 5 (04) 1053-1065
  • 95 Scheidecker B, Shinohara M, Sugimoto M, Danoy M, Nishikawa M, Sakai Y. Induction of in vitro metabolic zonation in primary hepatocytes requires both near-physiological oxygen concentration and flux. Front Bioeng Biotechnol 2020; 8: 524
  • 96 Allen JW, Bhatia SN. Formation of steady-state oxygen gradients in vitro: application to liver zonation. Biotechnol Bioeng 2003; 82 (03) 253-262
  • 97 Allen JW, Khetani SR, Bhatia SN. In vitro zonation and toxicity in a hepatocyte bioreactor. Toxicol Sci 2005; 84 (01) 110-119
  • 98 Poyck PP, Hoekstra R, Vermeulen JL. et al. Expression of glutamine synthetase and carbamoylphosphate synthetase i in a bioartificial liver: markers for the development of zonation in vitro. Cells Tissues Organs 2008; 188 (03) 259-269
  • 99 Ortega-Ribera M, Fernández-Iglesias A, Illa X. et al. Resemblance of the human liver sinusoid in a fluidic device with biomedical and pharmaceutical applications. Biotechnol Bioeng 2018; 115 (10) 2585-2594
  • 100 Long TJ, Cosgrove PA, Dunn II RT. et al. Modeling therapeutic antibody-small molecule drug-drug interactions using a three-dimensional perfusable human liver coculture platform. Drug Metab Dispos 2016; 44 (12) 1940-1948
  • 101 Sato A, Kadokura K, Uchida H, Tsukada K. An in vitro hepatic zonation model with a continuous oxygen gradient in a microdevice. Biochem Biophys Res Commun 2014; 453 (04) 767-771
  • 102 McCarty WJ, Usta OB, Yarmush ML. A microfabricated platform for generating physiologically-relevant hepatocyte zonation. Sci Rep 2016; 6: 26868
  • 103 Kang YBA, Eo J, Mert S, Yarmush ML, Usta OB. Metabolic patterning on a chip: towards in vitro liver zonation of primary rat and human hepatocytes. Sci Rep 2018; 8 (01) 8951
  • 104 Bulutoglu B, Rey-Bedón C, Kang YBA, Mert S, Yarmush ML, Usta OB. A microfluidic patterned model of non-alcoholic fatty liver disease: applications to disease progression and zonation. Lab Chip 2019; 19 (18) 3022-3031
  • 105 Vernetti LA, Senutovitch N, Boltz R. et al. A human liver microphysiology platform for investigating physiology, drug safety, and disease models. Exp Biol Med (Maywood) 2016; 241 (01) 101-114
  • 106 Lee-Montiel FT, George SM, Gough AH. et al. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems. Exp Biol Med (Maywood) 2017; 242 (16) 1617-1632
  • 107 Li X, George SM, Vernetti L, Gough AH, Taylor DL. A glass-based, continuously zonated and vascularized human liver acinus microphysiological system (vLAMPS) designed for experimental modeling of diseases and ADME/TOX. Lab Chip 2018; 18 (17) 2614-2631
  • 108 Janda CY, Dang LT, You C. et al. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 2017; 545 (7653): 234-237
  • 109 Ahn J, Ahn JH, Yoon S, Nam YS, Son MY, Oh JH. Human three-dimensional in vitro model of hepatic zonation to predict zonal hepatotoxicity. J Biol Eng 2019; 13: 22
  • 110 Halpern KB, Shenhav R, Massalha H. et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat Biotechnol 2018; 36 (10) 962-970
  • 111 Davidson MD, Pickrell J, Khetani SR. Physiologically inspired culture medium prolongs the lifetime and insulin sensitivity of human hepatocytes in micropatterned co-cultures. Toxicology 2021; 449: 152662
  • 112 Kukla DA, Crampton AL, Wood DK, Khetani SR. Microscale collagen and fibroblast interactions enhance primary human hepatocyte functions in three-dimensional models. Gene Expr 2020; 20 (01) 1-18