CC BY 4.0 · Pharmaceutical Fronts 2021; 03(04): e164-e182
DOI: 10.1055/s-0041-1741035
Review Article

Metal Complexes as DNA Synthesis and/or Repair Inhibitors: Anticancer and Antimicrobial Agents

Mpho Phehello Ngoepe
1   Department of Chemistry, University of South Africa, Pretoria, South Africa
,
Hadley S. Clayton
1   Department of Chemistry, University of South Africa, Pretoria, South Africa
› Institutsangaben
Funding This work was supported by the South African National Research Foundation (Grant No. 129549) and the University of South Africa.

Abstract

Medicinal inorganic chemistry involving the utilization of metal-based compounds as therapeutics has become a field showing distinct promise. DNA and RNA are ideal drug targets for therapeutic intervention in the case of various diseases, such as cancer and microbial infection. Metals play a vital role in medicine, with at least 10 metals known to be essential for human life and a further 46 nonessential metals having been involved in drug therapies and diagnosis. These metal-based complexes interact with DNA in various ways, and are often delivered as prodrugs which undergo activation in vivo. Metal complexes cause DNA crosslinking, leading to the inhibition of DNA synthesis and repair. In this review, the various interactions of metal complexes with DNA nucleic acids, as well as the underlying mechanism of action, were highlighted. Furthermore, we also discussed various tools used to investigate the interaction between metal complexes and the DNA. The tools included in vitro techniques such as spectroscopy and electrophoresis, and in silico studies such as protein docking and density-functional theory that are highlighted for preclinical development.



Publikationsverlauf

Eingereicht: 06. September 2021

Angenommen: 24. November 2021

Artikel online veröffentlicht:
30. Dezember 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rosenberg B. Chapter 2 - Cisplatin: its history and possible mechanisms of action. In: Prestayko AW, Crooke ST, Carter SK, Carter SK. eds. Cisplatin: Current Status and New Developments. New York, NY: Academic Press; 1980: 9-20
  • 2 Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy - an update from drug design perspective. Drug Des Devel Ther 2017; 11: 599-616
  • 3 Jory J. Cobalamin, microbiota and epigenetics. In: Patel V, Preedy V. eds. Handbook of Nutrition, Diet, and Epigenetics. Cham: Springe; 2017: 1707-1725
  • 4 Karaca Ö, Meier-Menches SM, Casini A, Kühn FE. On the binding modes of metal NHC complexes with DNA secondary structures: implications for therapy and imaging. Chem Commun (Camb) 2017; 53 (59) 8249-8260
  • 5 Shakeri A, Panahi Y, Johnston TP, Sahebkar A. Biological properties of metal complexes of curcumin. Biofactors 2019; 45 (03) 304-317
  • 6 Peter S, Aderibigbe BA. Ferrocene-based compounds with antimalaria/anticancer activity. Molecules 2019; 24 (19) 1-27
  • 7 Eyase FL, Akala HM, Johnson JD, Walsh DS. Inhibitory activity of ferroquine, versus chloroquine, against western Kenya Plasmodium falciparum field isolates determined by a SYBR Green I in vitro assay. Am J Trop Med Hyg 2011; 85 (06) 984-988
  • 8 Kondratskyi A, Kondratska K, Vanden Abeele F. et al. Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci Rep 2017; 7 (01) 1-15
  • 9 Doddi A, Peters M, Tamm M. N-heterocyclic carbene adducts of main group elements and their use as ligands in transition metal chemistry. Chem Rev 2019; 119 (12) 6994-7112
  • 10 Falivene L, Cavallo L. Theoretical NMR spectroscopy of N-heterocyclic carbenes and their metal complexes. Coord Chem Rev 2017; 344: 101-114
  • 11 Kumar S. Recent advances in the Schiff bases and N-heterocyclic carbenes as ligands in the cross-coupling reactions: a comprehensive review. J Heterocycl Chem 2019; 56 (04) 1168-1230
  • 12 Jia P, Ouyang R, Cao P. et al. Recent advances and future development of metal complexes as anticancer agents. J Coord Chem 2017; 70 (13) 2175-2201
  • 13 Kaczmarek MT, Zabiszak M, Nowak M, Jastrzab R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord Chem Rev 2018; 370: 42-54
  • 14 Cotruvo Jr JA, Featherston ER, Mattocks JA, Ho JV, Laremore TN. Lanmodulin: a highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. J Am Chem Soc 2018; 140 (44) 15056-15061
  • 15 Yu Z, Cowan JA. Metal complexes promoting catalytic cleavage of nucleic acids-biochemical tools and therapeutics. Curr Opin Chem Biol 2018; 43: 37-42
  • 16 Yusoh NA, Ahmad H, Gill MR. Combining PARP inhibition with platinum, ruthenium or gold complexes for cancer therapy. ChemMedChem 2020; 15 (22) 2121-2135
  • 17 Crittenden CM, Novelli ET, Mehaffey MR. et al. Structural evaluation of protein/metal complexes via native electrospray ultraviolet photodissociation mass spectrometry. J Am Soc Mass Spectrom 2020; 31 (05) 1140-1150
  • 18 Cao Q, Li Y, Freisinger E, Qin PZ, Sigel RK, Mao ZW. G-quadruplex DNA targeted metal complexes acting as potential anticancer drugs. Inorg Chem Front 2017; 4 (01) 10-32
  • 19 Zhang P, Sadler PJ. Redox-active metal complexes for anticancer therapy. Eur J Inorg Chem 2017; 2017 (12) 1541-1548
  • 20 Ni L, Zhao H, Tao L. et al. Synthesis, in vitro cytotoxicity, and structure-activity relationships (SAR) of multidentate oxidovanadium(iv) complexes as anticancer agents. Dalton Trans 2018; 47 (30) 10035-10045
  • 21 Schmidlehner M, Flocke LS, Roller A. et al. Cytotoxicity and preliminary mode of action studies of novel 2-aryl-4-thiopyrone-based organometallics. Dalton Trans 2016; 45 (02) 724-733
  • 22 Arshad J, Hanif M, Movassaghi S. et al. Anticancer Ru(η6-p-cymene) complexes of 2-pyridinecarbothioamides: a structure-activity relationship study. J Inorg Biochem 2017; 177: 395-401
  • 23 Riedl CA, Flocke LS, Hejl M. et al. Introducing the 4-phenyl-1,2,3-triazole moiety as a versatile scaffold for the development of cytotoxic ruthenium(II) and osmium(II) arene cyclometalates. Inorg Chem 2017; 56 (01) 528-541
  • 24 Meier-Menches SM, Gerner C, Berger W, Hartinger CG, Keppler BK. Structure-activity relationships for ruthenium and osmium anticancer agents - towards clinical development. Chem Soc Rev 2018; 47 (03) 909-928
  • 25 Zaki M, Hairat S, Aazam ES. Scope of organometallic compounds based on transition metal-arene systems as anticancer agents: starting from the classical paradigm to targeting multiple strategies. RSC Advances 2019; 9 (06) 3239-3278
  • 26 Feng Y, Sun WZ, Wang XS, Zhou QX. Selective photoinactivation of methicillin-resistant Staphylococcus aureus by highly positively charged RuII complexes. Chemistry 2019; 25 (61) 13879-13884
  • 27 Hachey AC, Havrylyuk D, Glazer EC. Biological activities of polypyridyl-type ligands: implications for bioinorganic chemistry and light-activated metal complexes. Curr Opin Chem Biol 2021; 61: 191-202
  • 28 Pal M, Nandi U, Mukherjee D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. Eur J Med Chem 2018; 150: 419-445
  • 29 Kominami H, Kobayashi K, Yamada H. Molecular-scale visualization and surface charge density measurement of Z-DNA in aqueous solution. Sci Rep 2019; 9 (01) 1-7
  • 30 Kulkarni M, Mukherjee A. Understanding B-DNA to A-DNA transition in the right-handed DNA helix: perspective from a local to global transition. Prog Biophys Mol Biol 2017; 128: 63-73
  • 31 Chakraborty D, Wales DJ. Probing helical transitions in a DNA duplex. Phys Chem Chem Phys 2016; 19 (01) 878-892
  • 32 Zavarykina TM, Atkarskaya MV, Zhizhina GP. The structural and functional properties of Z-DNA. Biophysics (Oxf) 2019; 64 (05) 671-682
  • 33 Pages BJ, Ang DL, Wright EP, Aldrich-Wright JR. Metal complex interactions with DNA. Dalton Trans 2015; 44 (08) 3505-3526
  • 34 Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem 2019; 88: 102925
  • 35 Zhou W, Saran R, Liu J. Metal sensing by DNA. Chem Rev 2017; 117 (12) 8272-8325
  • 36 Mandal S, Müller J. Metal-mediated DNA assembly with ligand-based nucleosides. Curr Opin Chem Biol 2017; 37: 71-79
  • 37 Scharf P, Müller J. Nucleic acids with metal-mediated base pairs and their applications. ChemPlusChem 2013; 78 (01) 20-34
  • 38 Park KS, Lee CY, Park HG. Metal ion triggers for reversible switching of DNA polymerase. Chem Commun (Camb) 2016; 52 (27) 4868-4871
  • 39 Wan L, Lam SL, Lee HK, Guo P. Rational design of a reversible Mg2+/EDTA-controlled molecular switch based on a DNA minidumbbell. Chem Commun (Camb) 2020; 56 (70) 10127-10130
  • 40 Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol 2019; 53 (02) 148-158
  • 41 Ferreira CR, Gahl WA. Disorders of metal metabolism. Transl Sci Rare Dis 2017; 2 (3–4): 101-139
  • 42 Li LG, Xia Y, Zhang T. Co-occurrence of antibiotic and metal resistance genes revealed in complete genome collection. ISME J 2017; 11 (03) 651-662
  • 43 McNeilly O, Mann R, Hamidian M, Gunawan C. Emerging concern for silver nanoparticle resistance in Acinetobacter baumannii and other bacteria. Front Microbiol 2021; 12: 652863
  • 44 Hu Q, Jayasinghe-Arachchige VM, Zuchniarz J, Prabhakar R. Effects of the metal ion on the mechanism of phosphodiester hydrolysis catalyzed by metal-cyclen complexes. Front Chem 2019; 7: 195
  • 45 Diez-Castellnou M, Martinez A, Mancin F. Chapter Four - Phosphate ester hydrolysis: the path from mechanistic investigation to the realization of artificial enzymes. In: Williams IH, Williams NH. eds. Advances in Physical Organic Chemistry. New York, NY: Academic Press; 2017: 129-186
  • 46 Kettenmann SD, Louka FR, Marine E. et al. Efficient artificial nucleases for mediating DNA cleavage based on tuning the steric effect in the pyridyl derivatives of tripod tetraamine-cobalt(II) complexes. Eur J Inorg Chem 2018; 2018 (20–21): 2322-2338
  • 47 Jastrząb R, Nowak M, Skrobańska M. et al. DNA as a target for lanthanide(III) complexes influence. Coord Chem Rev 2019; 382: 145-159
  • 48 Lüdtke C, Sobottka S, Heinrich J. et al. Forty years after the discovery of its nucleolytic activity: [Cu(phen)2 ]2+ shows unattended DNA cleavage activity upon fluorination. Chemistry 2021; 27 (10) 3273-3277
  • 49 Wernke KM, Xue M, Tirla A, Kim CS, Crawford JM, Herzon SB. Structure and bioactivity of colibactin. Bioorg Med Chem Lett 2020; 30 (15) 1-11
  • 50 Heinrich J, Stubbe J, Kulak N. Cu(II) complexes with hydrazone-functionalized phenanthrolines as self-activating metallonucleases. Inorg Chim Acta 2018; 481: 79-86
  • 51 McGivern TJP, Afsharpour S, Marmion CJ. Copper complexes as artificial DNA metallonucleases: from Sigman's reagent to next generation anti-cancer agent?. Inorg Chim Acta 2018; 472: 12-39
  • 52 Alexander JL, Thompson Z, Cowan JA. Antimicrobial metallopeptides. ACS Chem Biol 2018; 13 (04) 844-853
  • 53 Brissos RF, Caubet A, Gamez P. Possible DNA-interacting pathways for metal-based compounds exemplified with copper coordination compounds. Eur J Inorg Chem 2015; 2015 (16) 2633-2645
  • 54 Biswas PK, Chakraborty S. Targeted DNA oxidation and trajectory of radical DNA using DFT based QM/MM dynamics. Nucleic Acids Res 2019; 47 (06) 2757-2765
  • 55 Kuhlmann A, Hermann S, Weinberger M, Penner A, Wagenknecht HA. Photocatalysis with nucleic acids and peptides. Phys Sci Rev 2018; 3 (11) 1-12
  • 56 King TA, Mandrup Kandemir J, Walsh SJ, Spring DR. Photocatalytic methods for amino acid modification. Chem Soc Rev 2021; 50 (01) 39-57
  • 57 Koo B, Yoo H, Choi HJ, Kim M, Kim C, Kim KT. Visible light photochemical reactions for nucleic acid-based technologies. Molecules 2021; 26 (03) 1-24
  • 58 McFarland SA, Mandel A, Dumoulin-White R, Gasser G. Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology?. Curr Opin Chem Biol 2020; 56: 23-27
  • 59 Reeßing F, Szymanski W. Beyond photodynamic therapy: light-activated cancer chemotherapy. Curr Med Chem 2017; 24 (42) 4905-4950
  • 60 Miranda VM. Medicinal inorganic chemistry: an updated review on the status of metallodrugs and prominent metallodrug candidates. Rev Inorg Chem 2021; DOI: 10.1515/revic-2020-0030.
  • 61 Nandanwar SK, Kim HJ. Anticancer and antibacterial activity of transition metal complexes. ChemistrySelect 2019; 4 (05) 1706-1721
  • 62 Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Erratum: global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2020; 70 (04) 313-313
  • 63 Bergamo A, Dyson PJ, Sava G. The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions. Coord Chem Rev 2018; 360: 17-33
  • 64 Sodhi RK, Paul S. Metal complexes in medicine an overview and update from drug design perspective. Cancer Ther Oncol Int J 2019; 14 (01) 25-32
  • 65 Li X, Liu Y, Tian H. Current developments in Pt(IV) prodrugs conjugated with bioactive ligands. Bioinorg Chem Appl 2018; 2018: 8276139
  • 66 Wong DYQ. Probing the platinum(IV) prodrug hypothesis. Are platinum(IV) complexes really prodrugs of cisplatin?. In: Wong DYQ. ed. Rethinking Platinum Anticancer Drug Design: Towards Targeted and Immuno-chemotherapeutic Approaches. Singapore: Springer; 2018: 55-71
  • 67 Štarha P, Trávníček Z. Non-platinum complexes containing releasable biologically active ligands. Coord Chem Rev 2019; 395: 130-145
  • 68 Laurent Q, Batchelor LK, Dyson PJ. Applying a Trojan horse strategy to ruthenium complexes in the pursuit of novel antibacterial agents. Organometallics 2018; 37 (06) 915-923
  • 69 Hofer U. The cost of antimicrobial resistance. Nat Rev Microbiol 2019; 17 (01) 1
  • 70 Ramotowska S, Wysocka M, Brzeski J, Chylewska A, Makowski M. A comprehensive approach to the analysis of antibiotic-metal complexes. Trac-Trend Anal Chem 2020; 123: 1-9
  • 71 Swinney DC. Phenotypic drug discovery: history, evolution, future. In: Beverley Isherwood, Augustin A. eds. Phenotypic Drug Discovery. London: Royal Society of Chemistry; 2020: 1-19
  • 72 Frei A. Metal complexes, an untapped source of antibiotic potential?. Antibiotics (Basel) 2020; 9 (02) 1-24
  • 73 Venkateswarlu K, Kumar MP, Rambabu A. et al. Crystal structure, DNA binding, cleavage, antioxidant and antibacterial studies of Cu(II), Ni(II) and Co(III) complexes with 2-((furan-2-yl)methylimino)methyl)-6-ethoxyphenol Schiff base. J Mol Struct 2018; 1160: 198-207
  • 74 Jeżowska-Bojczuk M, Stokowa-Sołtys K. Peptides having antimicrobial activity and their complexes with transition metal ions. Eur J Med Chem 2018; 143: 997-1009
  • 75 Londono SC, Hartnett HE, Williams LB. Antibacterial activity of aluminum in clay from the Colombian Amazon. Environ Sci Technol 2017; 51 (04) 2401-2408
  • 76 Frei A, Zuegg J, Elliott AG. et al. Metal complexes as a promising source for new antibiotics. Chem Sci (Camb) 2020; 11 (10) 2627-2639
  • 77 Kumaravel G, Ponya Utthra P, Raman N. Exploiting the biological efficacy of benzimidazole based Schiff base complexes with l-Histidine as a co-ligand: combined molecular docking, DNA interaction, antimicrobial and cytotoxic studies. Bioorg Chem 2018; 77: 269-279
  • 78 Cirri D, Pratesi A, Marzo T, Messori L. Metallo therapeutics for COVID-19. Exploiting metal-based compounds for the discovery of new antiviral drugs. Expert Opin Drug Discov 2021; 16 (01) 39-46
  • 79 de Paiva REF, Marçal Neto A, Santos IA, Jardim ACG, Corbi PP, Bergamini FRG. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans 2020; 49 (45) 16004-16033
  • 80 Read SA, Obeid S, Ahlenstiel C, Ahlenstiel G. The role of zinc in antiviral immunity. Adv Nutr 2019; 10 (04) 696-710
  • 81 Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18 (11) 2565-2612
  • 82 Carcelli M, Fisicaro E, Compari C. et al. Metal-chelating properties and antiviral activity of some 2-hydroxyphenyl amides. Polyhedron 2017; 129: 97-104
  • 83 Dandawate P, Padhye S, Schobert R, Biersack B. Discovery of natural products with metal-binding properties as promising antibacterial agents. Expert Opin Drug Discov 2019; 14 (06) 563-576
  • 84 Huang M, Lu JJ, Ding J. Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect 2021; 11 (01) 5-13
  • 85 De A, Ray HP, Jain P, Kaur H, Singh N. Synthesis, characterization, molecular docking and DNA cleavage study of transition metal complexes of o-vanillin and glycine derived Schiff base ligand. J Mol Struct 2020; 1199: 126901
  • 86 Liu HK, Sadler PJ. Metal complexes as DNA intercalators. Acc Chem Res 2011; 44 (05) 349-359
  • 87 Berrones Reyes J, Kuimova MK, Vilar R. Metal complexes as optical probes for DNA sensing and imaging. Curr Opin Chem Biol 2021; 61: 179-190
  • 88 Dong J, Zhao D, Lu Y, Sun WY. Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J Mater Chem A Mater Energy Sustain 2019; 7 (40) 22744-22767
  • 89 Boros E, Holland JP. Chemical aspects of metal ion chelation in the synthesis and application antibody-based radiotracers. J Labelled Comp Radiopharm 2018; 61 (09) 652-671
  • 90 Puttemans J, Lahoutte T, D'Huyvetter M, Devoogdt N. Beyond the barrier: targeted radionuclide therapy in brain tumors and metastases. Pharmaceutics 2019; 11 (08) 1-23
  • 91 Sun M, Niaz MO, Nelson A, Skafida M, Niaz MJ. Review of 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Cureus 2020; 12 (06) 1-8
  • 92 Müller C, Béhé M, Geistlich S, van der Meulen NP, Schibli R. Targeted radiotherapeutics from'bench-to-bedside'. Chimia (Aarau) 2020; 74 (12) 939-945
  • 93 Sowa Dumond AR, Scott PJ. Concepts and issues for therapeutic radiopharmaceuticals. In: Scott P, Kilbourn M. eds. Handbook of Radiopharmaceuticals. Hoboken, NJ: Wiley; 2020: 23-42
  • 94 Kellett A, Molphy Z, Slator C, McKee V, Farrell NP. Molecular methods for assessment of non-covalent metallodrug-DNA interactions. Chem Soc Rev 2019; 48 (04) 971-988
  • 95 Hough MA, Owen RL. Serial synchrotron and XFEL crystallography for studies of metalloprotein catalysis. Curr Opin Struct Biol 2021; 71: 232-238
  • 96 Ebrahim A, Moreno-Chicano T, Appleby MV. et al. Dose-resolved serial synchrotron and XFEL structures of radiation-sensitive metalloproteins. IUCrJ 2019; 6 (Pt 4): 543-551
  • 97 Marchand A, Rosu F, Zenobi R, Gabelica V. Thermal denaturation of DNA G-quadruplexes and their complexes with ligands: thermodynamic analysis of the multiple states revealed by mass spectrometry. J Am Chem Soc 2018; 140 (39) 12553-12565
  • 98 Eyers CE, Vonderach M, Ferries S, Jeacock K, Eyers PA. Understanding protein-drug interactions using ion mobility-mass spectrometry. Curr Opin Chem Biol 2018; 42: 167-176
  • 99 Timerbaev AR. Application of ICP-MS to the development of metal-based drugs and diagnostic agents: where do we stand?. J Anal At Spectrom 2021; 36 (02) 254-266
  • 100 Arnesano F. NMR spectroscopy to study the fate of metallodrugs in cells. Curr Opin Chem Biol 2021; 61: 214-226
  • 101 Lincoln P, Wilhelmsson LM, Nordén B. Chapter 3: Slow DNA binding. In: Waring MJ. ed. DNA-targeting Molecules as Therapeutic Agents. London: The Royal Society of Chemistry; 2018: 45-73
  • 102 Morgan SM, El-Sonbati AZ, Eissa HR. Geometrical structures, thermal properties and spectroscopic studies of Schiff base complexes: correlation between ionic radius of metal complexes and DNA binding. J Mol Liq 2017; 240: 752-776
  • 103 Malik MA, Dar OA, Gull P, Wani MY, Hashmi AA. Heterocyclic Schiff base transition metal complexes in antimicrobial and anticancer chemotherapy. MedChemComm 2017; 9 (03) 409-436
  • 104 Raoufmoghaddam S, Zhou Y-P, Wang Y, Driess M. N-heterocyclic silylenes as powerful steering ligands in catalysis. J Organomet Chem 2017; 829: 2-10
  • 105 Zhao W, Ferro V, Baker MV. Carbohydrate–N-heterocyclic carbene metal complexes: synthesis, catalysis and biological studies. Coord Chem Rev 2017; 339: 1-16
  • 106 Afzal M, Al-Lohedan HA, Usman M, Tabassum S. Carbohydrate-based heteronuclear complexes as topoisomerase Iα inhibitor: approach toward anticancer chemotherapeutics. J Biomol Struct Dyn 2019; 37 (06) 1494-1510
  • 107 Lopes J, Alves D, Morais TS. et al. New copper(I) and heteronuclear copper(I)-ruthenium(II) complexes: synthesis, structural characterization and cytotoxicity. J Inorg Biochem 2017; 169: 68-78
  • 108 van Niekerk A, Chellan P, Mapolie SF. Heterometallic multinuclear complexes as anti-cancer agents-an overview of recent developments. Eur J Inorg Chem 2019; 2019 (30) 3432-3455
  • 109 Elie BT, Fernández-Gallardo J, Curado N, Cornejo MA, Ramos JW, Contel M. Bimetallic titanocene-gold phosphane complexes inhibit invasion, metastasis, and angiogenesis-associated signaling molecules in renal cancer. Eur J Med Chem 2019; 161: 310-322
  • 110 Kiwaan HA, El-Mowafy AS, El-Bindary AA. Synthesis, spectral characterization, DNA binding, catalytic and in vitro cytotoxicity of some metal complexes. J Mol Liq 2021; 326: 115381
  • 111 Qi SC, Hayashi JI, Zhang L. Recent application of calculations of metal complexes based on density functional theory. RSC Advances 2016; 6 (81) 77375-77395
  • 112 Alvarado-Soto L, Ramirez-Tagle R. Relativistic structure-activity relationship of cisplatin (II) complexes. J Struct Chem 2020; 61 (05) 688-693
  • 113 Kosiha A, Parthiban C, Ciattini S, Chelazzi L, Elango KP. Metal complexes of naphthoquinone based ligand: synthesis, characterization, protein binding, DNA binding/cleavage and cytotoxicity studies. J Biomol Struct Dyn 2018; 36 (16) 4170-4181
  • 114 Anupama B. DNA binding interactions, docking and antioxidative studies of ternary copper (II) complexes. J Mol Struct 2020; 1210: 127988
  • 115 Kondori T, Shahraki O, Akbarzadeh-T N, Aramesh-Boroujeni Z. Two novel bipyridine-based cobalt (II) complexes: synthesis, characterization, molecular docking, DNA-binding and biological evaluation. J Biomol Struct Dyn 2021; 39 (02) 595-609
  • 116 Neelakantan MA, Balamurugan K, Balakrishnan C, Subha L. Interaction of amino acid Schiff base metal complexes with DNA/BSA protein and antibacterial activity: spectral studies, DFT calculations and molecular docking simulations. Appl Organomet Chem 2018; 32 (04) e4259
  • 117 Zhao J, Li S, Wang X, Xu G, Gou S. Dinuclear organoruthenium complexes exhibiting antiproliferative activity through DNA damage and a reactive-oxygen-species-mediated endoplasmic reticulum stress pathway. Inorg Chem 2019; 58 (03) 2208-2217
  • 118 Mishra DK, Singha UK, Das A. et al. DNA binding, amelioration of oxidative stress, and molecular docking study of Zn (II) metal complex of a new Schiff base ligand. J Coord Chem 2018; 71 (14) 2165-2182
  • 119 Sharfalddin AA, Emwas AH, Jaremko M, Hussien MA. Transition metal complexes of 6-mercaptopurine: characterization, theoretical calculation, DNA-binding, molecular docking, and anticancer activity. Appl Organomet Chem 2021; 35 (01) e6041
  • 120 Abdel-Rahman LH, Adam MSS, Abu-Dief AM. et al. Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: promising antibiotic and anticancer agents. Appl Organomet Chem 2018; 32 (12) e4527
  • 121 Abdel-Rahman LH, Abu-Dief AM, Aboelez MO, Hassan Abdel-Mawgoud AA. DNA interaction, antimicrobial, anticancer activities and molecular docking study of some new VO(II), Cr(III), Mn(II) and Ni(II) mononuclear chelates encompassing quaridentate imine ligand. J Photochem Photobiol B 2017; 170: 271-285
  • 122 Kavitha B, Sravanthi M, Saritha Reddy P. DNA interaction, docking, molecular modelling and biological studies of o-Vanillin derived Schiff base metal complexes. J Mol Struct 2019; 1185: 153-167
  • 123 Rawal K, Khurana T, Sharma H. et al. An extensive survey of molecular docking tools and their applications using text mining and deep curation strategies. PeerJ 2019; 7: 1-177
  • 124 Wang Q. Protein-ligand Docking Application and Comparison Using Discovery Studio and AutoDock. Fargo, ND: North Dakota State University; 2017
  • 125 Pursuwani BH, Varma RR, Patel MN. Synthesis, characterization and biological applications of Osmium(IV) complexes. J Pure Appl Sci 2018; 26: 69-77
  • 126 Sciortino G, Rodríguez-Guerra Pedregal J, Lledós A, Garribba E, Maréchal JD. Prediction of the interaction of metallic moieties with proteins: an update for protein-ligand docking techniques. J Comput Chem 2018; 39 (01) 42-51
  • 127 Ang DL, Kelso C, Beck JL, Ralph SF, Harman DG, Aldrich-Wright JR. A study of Pt(II)-phenanthroline complex interactions with double-stranded and G-quadruplex DNA by ESI-MS, circular dichroism, and computational docking. J Biol Inorg Chem 2020; 25 (03) 429-440
  • 128 Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD. Molecular docking and structure-based drug design strategies. Molecules 2015; 20 (07) 13384-13421
  • 129 Prieto-Martínez FD, Arciniega M, Medina-Franco JL. Molecular docking: current advances and challenges. TIP Rev Esp Cienc Quím Biol 2018; 21: 65-87
  • 130 Riccardi L, Genna V, De Vivo M. Metal–ligand interactions in drug design. Nat Rev Chem 2018; 2 (07) 100-112
  • 131 Hollingsworth SA, Dror RO. Molecular dynamics simulation for all. Neuron 2018; 99 (06) 1129-1143
  • 132 Laage D, Elsaesser T, Hynes JT. Perspective: structure and ultrafast dynamics of biomolecular hydration shells. Struct Dyn 2017; 4 (04) 044018
  • 133 Janoš P, Spinello A, Magistrato A. All-atom simulations to studying metallodrugs/target interactions. Curr Opin Chem Biol 2021; 61: 1-8
  • 134 van Rixel VHS, Busemann A, Wissingh MF. et al. Induction of a four-way junction structure in the DNA palindromic hexanucleotide 5′-d(CGTACG)-3′ by a mononuclear platinum complex. Angew Chem Int Ed Engl 2019; 58 (28) 9378-9382
  • 135 Guarra F, Marzo T, Ferraroni M. et al. Interaction of a gold(i) dicarbene anticancer drug with human telomeric DNA G-quadruplex: solution and computationally aided X-ray diffraction analysis. Dalton Trans 2018; 47 (45) 16132-16138
  • 136 Nakagaki M, Aono S, Kato M, Sakaki S. Delocalization of the excited state and emission spectrum of the platinum(II) bipyridine complex in crystal: periodic QM/MM study. J Phys Chem C 2020; 124 (19) 10453-10461
  • 137 Cui Q, Pal T, Xie L. Biomolecular QM/MM simulations: what are some of the “burning issues”?. J Phys Chem B 2021; 125 (03) 689-702
  • 138 Zhong HA. ADMET properties: overview and current topics. In: Grover A. ed. Drug Design: Principles and Applications. Singapore: Springer; 2017: 113-133
  • 139 Anthony EJ, Bolitho EM, Bridgewater HE. et al. Metallodrugs are unique: opportunities and challenges of discovery and development. Chem Sci (Camb) 2020; 11 (48) 12888-12917
  • 140 Chagas CM, Moss S, Alisaraie L. Drug metabolites and their effects on the development of adverse reactions: revisiting Lipinski's Rule of Five. Int J Pharm 2018; 549 (1–2): 133-149
  • 141 Jeyaraman P, Alagarraj A, Natarajan R. In silico and in vitro studies of transition metal complexes derived from curcumin-isoniazid Schiff base. J Biomol Struct Dyn 2020; 38 (02) 488-499
  • 142 Zhang J, Wu S, Ma L, Wu P, Liu J. Graphene oxide as a photocatalytic nuclease mimicking nanozyme for DNA cleavage. Nano Res 2020; 13 (02) 455-460
  • 143 Bhar R, Kaur G, Mehta SK. Experimental validation of DNA interactions with nanoparticles derived from metal coupled amphiphiles. J Biomol Struct Dyn 2018; 36 (14) 3614-3622
  • 144 Swasey SM. On the interactions of silver with DNA: from metal-mediated base pairings to fluorescent clusters. Los Angeles, CA: University of California; 2017: 1-202
  • 145 Hu Q, Li H, Wang L, Gu H, Fan C. DNA nanotechnology-enabled drug delivery systems. Chem Rev 2019; 119 (10) 6459-6506
  • 146 Julin S, Nummelin S, Kostiainen MA, Linko V. DNA nanostructure-directed assembly of metal nanoparticle superlattices. J Nanopart Res 2018; 20 (05) 1-11
  • 147 Li N, Shang Y, Han Z, Wang T, Wang ZG, Ding B. Fabrication of metal nanostructures on DNA templates. ACS Appl Mater Interfaces 2019; 11 (15) 13835-13852
  • 148 Ghosh D, Datta LP, Govindaraju T. Molecular architectonics of DNA for functional nanoarchitectures. Beilstein J Nanotechnol 2020; 11: 124-140
  • 149 Pandeeswar M, Senanayak SP, Govindaraju T. Nanoarchitectonics of small molecule and DNA for ultrasensitive detection of mercury. ACS Appl Mater Interfaces 2016; 8 (44) 30362-30371
  • 150 Mirzaei S, Hushmandi K, Zabolian A. et al. Elucidating role of reactive oxygen species (ROS) in cisplatin chemotherapy: a focus on molecular pathways and possible therapeutic strategies. Molecules 2021; 26 (08) 2382
  • 151 Kathiresan S, Mugesh S, Annaraj J, Murugan M. Mixed-ligand copper(ii) Schiff base complexes: the vital role of co-ligands in DNA/protein interactions and cytotoxicity. New J Chem 2017; 41 (03) 1267-1283
  • 152 Kumar M, Kumar G, Kant A, Masram DT. Role of metallodrugs in medicinal inorganic chemistry. In: Ul-Islam S, Hashmi AA, Khan SA. eds. Advances in Metallodrugs: Preparation and Applications in Medicinal Chemistry. Salem, MA: Scrivener Publishing LLC; 2020: 71-113
  • 153 Lazarević T, Rilak A, Bugarčić ŽD. Platinum, palladium, gold and ruthenium complexes as anticancer agents: current clinical uses, cytotoxicity studies and future perspectives. Eur J Med Chem 2017; 142: 8-31
  • 154 Yang X. Regulating cellular stress responses: an emerging strategy for rational metallodrug design. Future Med Chem 2018; 10 (06) 611-614