Subscribe to RSS

DOI: 10.1055/s-0041-1741030
Adrenal Androgen Predictive Effects on Clinical and Metabolic Abnormalities of Polycystic Ovary Syndrome
Efeitos preditivos dos androgênios adrenais nas anormalidades clínicas e metabólicas da síndrome dos ovários policísticos
Abstract
Objective To examine the possible effects of adrenal prohormones in the prediction of clinical and metabolic abnormalities in women with polycystic ovary syndrome (PCOS).
Methods The present study enrolled 299 normal cycling non-PCOS, 156 normoandrogenemic, and 474 hyperandrogenemic women with PCOS. Baseline characteristics were compared using a chi-squared test or analysis of variance (ANOVA) as appropriate. The roles of adrenal prohormones and their ratios with total testosterone in predicting co-occurring morbidities in women PCOS were evaluated using univariate and multivariate logistic regression analyses.
Results Adrenal hyperandrogenism per dehydroepiandrosterone sulfate (DHEAS) levels were found in 32% of women with PCOS. In non-PCOS women, dehydroepiandrosterone (DHEA) and its sulfate had no predictive role concerning clinical, anthropometric, and metabolic parameters. In PCOS women, mainly in the hyperandrogenemic group, DHEA showed to be a significant predictor against most anthropometric-metabolic index abnormalities (odds ratio [OR] = 0.36–0.97; p < 0.05), and an increase in triglycerides (TG) levels (OR = 0.76; p = 0.006). Dehydroepiandrosterone sulfate presented a few predictive effects regarding PCOS-associated disorders. In controls, DHEAS predicted against the increase in estimated average glucose (OR= 0.38; p = 0.036). In the normoandrogenic group, it predicted against elevation in the waist/hip ratio (WHR) (OR= 0.59; p = 0.042), and in hyperandrogenemic PCOS women, it predicted against abnormality in the conicity index (CI) (OR = 0.31; p = 0.028).
Conclusion Dehydroepiandrosterone was shown to be a better predictor of abnormal anthropometric and biochemical parameters in women with PCOS than DHEAS. Thus, regarding adrenal prohormones, DHEA measurement, instead of DHEAS, should be preferred in PCOS management. The effects of androgen prohormones on the prediction of PCOS abnormalities are weak.
Resumo
Objetivo Examinar os possíveis efeitos dos pró-hormônios adrenais na predição de alterações clínicas e metabólicas em mulheres com síndrome dos ovários policísticos (SOP).
Métodos O presente estudo envolveu 299 mulheres com ciclos menstruais regulares e 630 mulheres com SOP, sendo 156 normoandrogenêmicas e 474 hiperandrogenêmicas. As variáveis incluídas como objeto do estudo foram comparadas entre os grupos usando o teste de qui-quadrado ou análise de variância (ANOVA, na sigla em inglês). Os impactos dos pró-hormônios adrenais e suas razões com a testosterona total na predição de comorbidades em mulheres com SOP foram determinados por regressão logística univariada e multivariada.
Resultados Hiperandrogenismo adrenal foi encontrado em 32% das mulheres com SOP. Nos controles, a dehidroepiandrosterona e seu sulfato (DHEAS) não mostraram significância na predição das alterações clínicas, antropométricas e metabólicas. Em mulheres com SOP, principalmente no grupo de mulheres com hiperandrogenemia, a dehidroepiandrosterona (DHEA) mostrou ser um preditor significante da maioria das anormalidades nos índices antropométrico-metabólicos (odds ratio [OR] = 0,36–0,97; p < 0,05) e aumento nos níveis de triglicerídeos (TG) (OR = 0,76; p = 0,006). A DHEAS apresentou ter pouco valor na predição dos distúrbios associados à SOP; nas mulheres com androgênios elevados, restringiu-se à predição da elevação do índice de conicidade (IC) (OR = 0,31; p = 0,028).
Conclusão A DHEA mostrou ser um melhor preditor na identificação das alterações dos parâmetros antropométricos e bioquímicos em mulheres com SOP do que o seu sulfato. Assim, em relação aos pró-hormônios adrenais, a dosagem de DHEA, em vez de DHEAS, parece ser mais útil no manejo da SOP. O papel dos pró-hormônios adrenais na predição de anormalidades antropométricas e metabólicas da SOP é limitado.
Palavras-chave
síndrome dos ovários policísticos - hiperandrogenismo - obesidade - hiperinsulinemia - metabolismoContributions
Medeiros S. F.: design, data description, statistical analysis, and writing of the manuscript; Medeiros M. A. S.: data search, revision of the manuscript; Barbosa B. B.: data search, data analysis, revision of the manuscript; Medeiros A. K. L. W. Y.: data search, revision of the manuscript. Yamamoto M. M. W.: data search, revision of the manuscript. All authors approved the final version of the manuscript.
Publication History
Received: 22 January 2021
Accepted: 15 September 2021
Article published online:
25 February 2022
© 2022. Federação Brasileira de Ginecologia e Obstetrícia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)
Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil
-
References
- 1 March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ. The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Hum Reprod 2010; 25 (02) 544-551
- 2 Zawadski JK, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. In: Dunaif A, Givens JR, Haseltine F. eds. Polycystic ovary syndrome. Boston: Blackwell Scientific; 1992: 377-384
- 3 Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 2004; 81 (01) 19-25
- 4 Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W. et al; Androgen Excess Society. Positions statement: criteria for defining polycystic ovary syndrome as a predominantly hyperandrogenic syndrome: an Androgen Excess Society guideline. J Clin Endocrinol Metab 2006; 91 (11) 4237-4245
- 5 Jones H, Sprung VS, Pugh CJ, Daousi C, Irwin A, Aziz N. et al. Polycystic ovary syndrome with hyperandrogenism is characterized by an increased risk of hepatic steatosis compared to nonhyperandrogenic PCOS phenotypes and healthy controls, independent of obesity and insulin resistance. J Clin Endocrinol Metab 2012; 97 (10) 3709-3716
- 6 Baranova A, Tran TP, Afendy A, Wang L, Shamsaddini A, Mehta R. et al. Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease (NAFLD) and polycystic ovarian syndrome (PCOS). J Transl Med 2013; 11: 133
- 7 Yang R, Yang S, Li R, Liu P, Qiao J, Zhang Y. Effects of hyperandrogenism on metabolic abnormalities in patients with polycystic ovary syndrome: a meta-analysis. Reprod Biol Endocrinol 2016; 14 (01) 67
- 8 Kumarendran B, O'Reilly MW, Manolopoulos KN, Toulis KA, Gokhale KM, Sitch AJ. et al. Polycystic ovary syndrome, androgen excess, and the risk of nonalcoholic fatty liver disease in women: A longitudinal study based on a United Kingdom primary care database. PLoS Med 2018; 15 (03) e1002542
- 9 de Medeiros SF, de Medeiros MAS, Barbosa BB, Yamamoto MMW. Relationship of biological markers of body fat distribution and corticosteroidogenic enzyme activities in women with polycystic ovary syndrome. Horm Metab Res 2019; 51 (10) 639-648
- 10 Kahal H, Kyrou I, Uthman OA, Brown A, Johnson S, Wall PDH. et al. The prevalence of obstructive sleep apnoea in women with polycystic ovary syndrome: a systematic review and meta-analysis. Sleep Breath 2020; 24 (01) 339-350
- 11 Sung YA, Oh JY, Chung H, Lee H. Hyperandrogenemia is implicated in both the metabolic and reproductive morbidities of polycystic ovary syndrome. Fertil Steril 2014; 101 (03) 840-845
- 12 Ezeh U, Pall M, Mathur R, Azziz R. Association of fat to lean mass ratio with metabolic dysfunction in women with polycystic ovary syndrome. Hum Reprod 2014; 29 (07) 1508-1517
- 13 Couto Alves A, Valcarcel B, Mäkinen VP, Morin-Papunen L, Sebert S, Kangas AJ. et al. Metabolic profiling of polycystic ovary syndrome reveals interactions with abdominal obesity. Int J Obes 2017; 41 (09) 1331-1340
- 14 Zhang B, Wang J, Shen S, Liu J, Sun J, Gu T. et al. Association of androgen excess with glucose intolerance in women with Polycystic Ovary Syndrome. BioMed Res Int 2018; 2018: 6869705
- 15 Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS. et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev 2004; 25 (05) 831-866
- 16 Veilleux A, Rhéaume C, Daris M, Luu-The V, Tchernof A. Omental adipose tissue type 1 11 beta-hydroxysteroid dehydrogenase oxoreductase activity, body fat distribution, and metabolic alterations in women. J Clin Endocrinol Metab 2009; 94 (09) 3550-3557
- 17 Georgopoulos NA, Papadakis E, Armeni AK, Katsikis I, Roupas ND, Panidis D. Elevated serum androstenedione is associated with a more severe phenotype in women with polycystic ovary syndrome (PCOS). Hormones (Athens) 2014; 13 (02) 213-221
- 18 O'Reilly MW, House PJ, Tomlinson JW. Understanding androgen action in adipose tissue. J Steroid Biochem Mol Biol 2014; 143: 277-284
- 19 Schiffer L, Kempegowda P, Arlt W, O'Reilly MW. MECHANISMS IN ENDOCRINOLOGY: The sexually dimorphic role of androgens in human metabolic disease. Eur J Endocrinol 2017; 177 (03) R125-R143
- 20 Hansen PA, Han DH, Nolte LA, Chen M, Holloszy JO. DHEA protects against visceral obesity and muscle insulin resistance in rats fed a high-fat diet. Am J Physiol 1997; 273 (05) R1704-R1708
- 21 Perrini S, Natalicchio A, Laviola L, Belsanti G, Montrone C, Cignarelli A. et al. Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane. Diabetes 2004; 53 (01) 41-52
- 22 Rice SP, Zhang L, Grennan-Jones F, Agarwal N, Lewis MD, Rees DA. et al. Dehydroepiandrosterone (DHEA) treatment in vitro inhibits adipogenesis in human omental but not subcutaneous adipose tissue. Mol Cell Endocrinol 2010; 320 (1-2): 51-57
- 23 Hernandez-Morante JJ, Milagro F, Gabaldon JA, Martinez JA, Zamora S, Garaulet M. Effect of DHEA-sulfate on adiponectin gene expression in adipose tissue from different fat depots in morbidly obese humans. Eur J Endocrinol 2006; 155 (04) 593-600
- 24 McNelis JC, Manolopoulos KN, Gathercole LL, Bujalska IJ, Stewart PM, Tomlinson JW. et al. Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation, and glucose uptake. Am J Physiol Endocrinol Metab 2013; 305 (09) E1134-E1144
- 25 Lerchbaum E, Schwetz V, Giuliani A, Pieber TR, Obermayer-Pietsch B. Opposing effects of dehydroepiandrosterone sulfate and free testosterone on metabolic phenotype in women with polycystic ovary syndrome. Fertil Steril 2012; 98 (05) 1318-25.e1
- 26 Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol 2015; 145: 213-225
- 27 de Medeiros SF, Barbosa BB, de Medeiros AKLWY, de Medeiros MAS, Yamamoto MMW. Differential effects of various androgens on polycystic ovary syndrome. Horm Metab Res 2021; 53 (05) 341-349
- 28 de Medeiros SF, Ormond CM, de Medeiros MAS, de Souza Santos N, Banhara CR, Yamamoto MMW. Metabolic and endocrine connections of 17-hydroxypregnenolone in polycystic ovary syndrome women. Endocr Connect 2017; 6 (07) 479-488
- 29 Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L. et al; International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril 2018; 110 (03) 364-379
- 30 Fraser IS, Critchley HO, Broder M, Munro MG. The FIGO recommendations on terminologies and definitions for normal and abnormal uterine bleeding. Semin Reprod Med 2011; 29 (05) 383-390
- 31 Wild RA, Vesely S, Beebe L, Whitsett T, Owen W. Ferriman Gallwey self-scoring I: performance assessment in women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90 (07) 4112-4114
- 32 Kristensen SL, Ramlau-Hansen CH, Ernst E, Olsen SF, Bonde JP, Vested A. et al. A very large proportion of young Danish women have polycystic ovaries: is a revision of the Rotterdam criteria needed?. Hum Reprod 2010; 25 (12) 3117-3122
- 33 de Medeiros SF, Yamamoto MMW, Souto de Medeiros MA, Barbosa BB, Soares JM, Baracat EC. Changes in clinical and biochemical characteristics of polycystic ovary syndrome with advancing age. Endocr Connect 2020; 9 (02) 74-89
- 34 American Diabetes Association. Standards of medical care in diabetes–2010. Diabetes Care 2010; 33 (Suppl. 01) S11-S61
- 35 James WP. Research on obesity: a report of the DHSS/MRC group HM. London: Stationery Office; 1976
- 36 Krakauer NY, Krakauer JC. A new body shape index predicts mortality hazard independently of body mass index. PLoS One 2012; 7 (07) e39504
- 37 Yang RF, Liu XY, Lin Z, Zhang G. Correlation study on waist circumference-triglyceride (WT) index and coronary artery scores in patients with coronary heart disease. Eur Rev Med Pharmacol Sci 2015; 19 (01) 113-118
- 38 Valdez R. A simple model-based index of abdominal adiposity. J Clin Epidemiol 1991; 44 (09) 955-956
- 39 Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M. et al; AlkaMeSy Study Group. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010; 33 (04) 920-922
- 40 Kahn HS, Valdez R. Metabolic risks identified by the combination of enlarged waist and elevated triacylglycerol concentration. Am J Clin Nutr 2003; 78 (05) 928-934
- 41 Medeiros SF, Gil-Junior AB, Barbosa JS, Isaías ED, Yamamoto MM. New insights into steroidogenesis in normo- and hyperandrogenic polycystic ovary syndrome patients. Arq Bras Endocrinol Metabol 2013; 57 (06) 437-444
- 42 Nathan DM, Kuenen J, Borg R, Zheng H, Schoenfeld D, Heine RJ. A1c-Derived Average Glucose Study Group. Translating the A1C assay into estimated average glucose values. Diabetes Care 2008; 31 (08) 1473-1478
- 43 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28 (07) 412-419
- 44 Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 1972; 18 (06) 499-502
- 45 de Medeiros SF, Yamamoto MM, Bueno HB, Belizario D, Barbosa JS. Prevalence of elevated glycated hemoglobin concentrations in the polycystic ovary syndrome: anthropometrical and metabolic relationship in amazonian women. J Clin Med Res 2014; 6 (04) 278-286
- 46 Medeiros SF, Barbosa JS, Yamamoto MM. Comparison of steroidogenic pathways among normoandrogenic and hyperandrogenic polycystic ovary syndrome patients and normal cycling women. J Obstet Gynaecol Res 2015; 41 (02) 254-263
- 47 Huang K, Bao JP, Jennings GJ, Wu LD. The disease-modifying effect of dehydroepiandrosterone in different stages of experimentally induced osteoarthritis: a histomorphometric study. BMC Musculoskelet Disord 2015; 16: 178
- 48 Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO. The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 2004; 89 (06) 2745-2749
- 49 Gil Junior AB, Rezende AP, do Carmo AV, Duarte EI, de Medeiros MM, de Medeiros SF. [Adrenal androgen participation in the polycystic ovary syndrome]. Rev Bras Ginecol Obstet 2010; 32 (11) 541-548
- 50 Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev 1997; 18 (06) 774-800
- 51 Tosi F, Negri C, Brun E, Castello R, Faccini G, Bonora E. et al. Insulin enhances ACTH-stimulated androgen and glucocorticoid metabolism in hyperandrogenic women. Eur J Endocrinol 2011; 164 (02) 197-203
- 52 Tock L, Carneiro G, Pereira AZ, Tufik S, Zanella MT. Adrenocortical production is associated with higher levels of luteinizing hormone in nonobese women with polycystic ovary syndrome. Int J Endocrinol 2014; 2014: 620605
- 53 Lerchbaum E, Schwetz V, Rabe T, Giuliani A, Obermayer-Pietsch B. Hyperandrogenemia in polycystic ovary syndrome: exploration of the role of free testosterone and androstenedione in metabolic phenotype. PLoS One 2014; 9 (10) e108263
- 54 Alexiou E, Hatziagelaki E, Pergialiotis V, Chrelias C, Kassanos D, Siristatidis C. et al. Hyperandrogenemia in women with polycystic ovary syndrome: prevalence, characteristics and association with body mass index. Horm Mol Biol Clin Investig 2017; 29 (03) 105-111
- 55 Yanes Cardozo LL, Romero DG, Reckelhoff JF. Cardiometabolic features of polycystic ovary syndrome: role of androgens. Physiology (Bethesda) 2017; 32 (05) 357-366
- 56 Chen MJ, Yang WS, Yang JH, Chen CL, Ho HN, Yang YS. Relationship between androgen levels and blood pressure in young women with polycystic ovary syndrome. Hypertension 2007; 49 (06) 1442-1447
- 57 Oliveira RdoS, Redorat RG, Ziehe GH, Mansur VA, Conceição FL. Arterial hypertension and metabolic profile in patients with polycystic ovary syndrome. Rev Bras Ginecol Obstet 2013; 35 (01) 21-26
- 58 Amiri M, Ramezani Tehrani F, Behboudi-Gandevani S, Bidhendi-Yarandi R, Carmina E. Risk of hypertension in women with polycystic ovary syndrome: a systematic review, meta-analysis and meta-regression. Reprod Biol Endocrinol 2020; 18 (01) 23
- 59 Carmina E, Koyama T, Chang L, Stanczyk FZ, Lobo RA. Does ethnicity influence the prevalence of adrenal hyperandrogenism and insulin resistance in polycystic ovary syndrome?. Am J Obstet Gynecol 1992; 167 (06) 1807-1812
- 60 Li L, Yang D, Chen X, Chen Y, Feng S, Wang L. Clinical and metabolic features of polycystic ovary syndrome. Int J Gynaecol Obstet 2007; 97 (02) 129-134
- 61 Fujioka K, Kajita K, Wu Z, Hanamoto T, Ikeda T, Mori I. et al. Dehydroepiandrosterone reduces preadipocyte proliferation via androgen receptor. Am J Physiol Endocrinol Metab 2012; 302 (06) E694-E704
- 62 Kochan Z, Karbowska J. Dehydroepiandrosterone up-regulates resistin gene expression in white adipose tissue. Mol Cell Endocrinol 2004; 218 (1-2): 57-64
- 63 Buffington CK, Givens JR, Kitabchi AE. Opposing actions of dehydroepiandrosterone and testosterone on insulin sensitivity. In vivo and in vitro studies of hyperandrogenic females. Diabetes 1991; 40 (06) 693-700
- 64 Yamashita R, Saito T, Satoh S, Aoki K, Kaburagi Y, Sekihara H. Effects of dehydroepiandrosterone on gluconeogenic enzymes and glucose uptake in human hepatoma cell line, HepG2. Endocr J 2005; 52 (06) 727-733
- 65 De Pergola G, Zamboni M, Sciaraffia M, Turcato E, Pannacciulli N, Armellini F. et al. Body fat accumulation is possibly responsible for lower dehydroepiandrosterone circulating levels in premenopausal obese women. Int J Obes Relat Metab Disord 1996; 20 (12) 1105-1110
- 66 Mannic T, Viguie J, Rossier MF. In vivo and in vitro evidences of dehydroepiandrosterone protective role on the cardiovascular system. Int J Endocrinol Metab 2015; 13 (02) e24660
- 67 Tchernof A, Labrie F. Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies. Eur J Endocrinol 2004; 151 (01) 1-14
- 68 Moran C, Arriaga M, Arechavaleta-Velasco F, Moran S. Adrenal androgen excess and body mass index in polycystic ovary syndrome. J Clin Endocrinol Metab 2015; 100 (03) 942-950
- 69 Zerradi M, Dereumetz J, Boulet MM, Tchernof A. Androgens, body fat Distribution and Adipogenesis. Curr Obes Rep 2014; 3 (04) 396-403
- 70 Brahimaj A, Ligthart S, Ikram MA, Hofman A, Franco OH, Sijbrands EJG. et al. Serum levels of apolipoproteins and incident type 2 diabetes: a prospective cohort study. Diabetes Care 2017; 40 (03) 346-351
- 71 Nestler JE, Clore JN, Blackard WG. Dehydroepiandrosterone: the “missing link” between hyperinsulinemia and atherosclerosis?. FASEB J 1992; 6 (12) 3073-3075
- 72 Farah-Eways L, Reyna R, Knochenhauer ES, Bartolucci AA, Azziz R. Glucose action and adrenocortical biosynthesis in women with polycystic ovary syndrome. Fertil Steril 2004; 81 (01) 120-125
- 73 Morán C, Knochenhauer E, Boots LR, Azziz R. Adrenal androgen excess in hyperandrogenism: relation to age and body mass. Fertil Steril 1999; 71 (04) 671-674
- 74 Alpañés M, Luque-Ramírez M, Martínez-García MA, Fernández-Durán E, Álvarez-Blasco F, Escobar-Morreale HF. Influence of adrenal hyperandrogenism on the clinical and metabolic phenotype of women with polycystic ovary syndrome. Fertil Steril 2015; 103 (03) 795-801.e2
- 75 Vryonidou A, Papatheodorou A, Tavridou A, Terzi T, Loi V, Vatalas I-A. et al. Association of hyperandrogenemic and metabolic phenotype with carotid intima-media thickness in young women with polycystic ovary syndrome. J Clin Endocrinol Metab 2005; 90 (05) 2740-2746
- 76 Carmina E, Lobo RA. Prevalence and metabolic characteristics of adrenal androgen excess in hyperandrogenic women with different phenotypes. J Endocrinol Invest 2007; 30 (02) 111-116
- 77 Brennan K, Huang A, Azziz R. Dehydroepiandrosterone sulfate and insulin resistance in patients with polycystic ovary syndrome. Fertil Steril 2009; 91 (05) 1848-1852
- 78 Chen MJ, Chen CD, Yang JH, Chen C-L, Ho H-N, Yang W-S. et al. High serum dehydroepiandrosterone sulfate is associated with phenotypic acne and a reduced risk of abdominal obesity in women with polycystic ovary syndrome. Hum Reprod 2011; 26 (01) 227-234
- 79 Misichronis G, Georgopoulos NA, Marioli DJ, Armeni AK, Katsikis I, Piouka AD. et al. The influence of obesity on androstenedione to testosterone ratio in women with polycystic ovary syndrome (PCOS) and hyperandrogenemia. Gynecol Endocrinol 2012; 28 (04) 249-252
- 80 Huang R, Zheng J, Li S, Tao T, Ma J, Liu W. Characteristics and contributions of hyperandrogenism to insulin resistance and other metabolic profiles in polycystic ovary syndrome. Acta Obstet Gynecol Scand 2015; 94 (05) 494-500
- 81 Savastano S, Belfiore A, Guida B, Angrisani L, Orio Jr F, Cascella T. et al. Role of dehydroepiandrosterone sulfate levels on body composition after laparoscopic adjustable gastric banding in pre-menopausal morbidly obese women. J Endocrinol Invest 2005; 28 (06) 509-515
- 82 Simoncini T, Mannella P, Fornari L, Varone G, Caruso A, Genazzani AR. Dehydroepiandrosterone modulates endothelial nitric oxide synthesis via direct genomic and nongenomic mechanisms. Endocrinology 2003; 144 (08) 3449-3455
- 83 Meirow D, Raz I, Yossepowitch O, Brzezinski A, Rosler A, Schenker JG. et al. Dyslipidaemia in polycystic ovarian syndrome: different groups, different aetiologies?. Hum Reprod 1996; 11 (09) 1848-1853
- 84 Köşüş N, Köşüş A, Kamalak Z, Hızlı D, Turhan NÖ. Impact of adrenal versus ovarian androgen ratio on signs and symptoms of polycystic ovarian syndrome. Gynecol Endocrinol 2012; 28 (08) 611-614
- 85 Schriock ED, Buffington CK, Hubert GD, Kurtz BR, Kitabchi AE, Buster JE. et al. Divergent correlations of circulating dehydroepiandrosterone sulfate and testosterone with insulin levels and insulin receptor binding. J Clin Endocrinol Metab 1988; 66 (06) 1329-1331
- 86 Lea-Currie YR, Wen P, McIntosh MK. Dehydroepiandrosterone-sulfate (DHEAS) reduces adipocyte hyperplasia associated with feeding rats a high-fat diet. Int J Obes Relat Metab Disord 1997; 21 (11) 1058-1064
- 87 Gambineri A, Patton L, Vaccina A, Cacciari M, Morselli-Labate AM, Cavazza C. et al. Treatment with flutamide, metformin, and their combination added to a hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. J Clin Endocrinol Metab 2006; 91 (10) 3970-3980
- 88 Ingelsson E, Schaefer EJ, Contois JH, McNamara JR, Sullivan L, Keyes MJ. et al. Clinical utility of different lipid measures for prediction of coronary heart disease in men and women. JAMA 2007; 298 (07) 776-785
- 89 Legro RS, Schlaff WD, Diamond MP, Coutifaris C, Casson PR, Brzyski R. et al; Reproductive Medicine Network. Total testosterone assays in women with polycystic ovary syndrome: precision and correlation with hirsutism. J Clin Endocrinol Metab 2010; 95 (12) 5305-5313
- 90 Janse F, Eijkemans MJ, Goverde AJ, Lentjes EGWM, Hoek A, Lambalk CB, Hickey TE. et al. Assessment of androgen concentration in women: liquid chromatography-tandem mass spectrometry and extraction RIA show comparable results. Eur J Endocrinol 2011; 165 (06) 925-933