J Neurol Surg A Cent Eur Neurosurg 2023; 84(01): 37-43
DOI: 10.1055/s-0041-1739211
Original Article

Cortical Bone Trajectory Pedicle Screw Fixation in Surgical Treatment of Monosegmental Pyogenic Lumbar Spondylodiskitis

1   Department of Orthopedic Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea
,
Sang-II Kim
2   Department of Orthopedic Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
,
Jiyoung Jung
1   Department of Orthopedic Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea
,
Kee-Won Rhyu
1   Department of Orthopedic Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea
› Author Affiliations

Abstract

Background and Study Object Pedicle screw fixation has been widely used in surgical treatment for infective lumbar spondylodiskitis to prevent instability and deformity. The cortical bone trajectory pedicle screw (CBTPS) fixation is a minimally invasive posterior spinal fixation system that runs from the pedicle's entry point of the caudiomedial region toward the cephalad-divergent direction. Successful results with CBTPS fixation have been reported to treat degenerative and osteoporotic spinal diseases. This study aims to investigate the clinical feasibility of CBTPS in the surgical treatment of pyogenic lumbar spondylodiskitis.

Patient and Methods We retrospectively retrieved 20 consecutive patients from two academic centers who were surgically treated for monosegmental lumbar pyogenic spondylodiskitis. The primary surgical treatment was the anterior lumbar interbody fusion with decompression, debridement, and reconstruction using an autogenous iliac strut bone graft. One to 2 weeks after the primary surgery, patients underwent a second surgery for posterior instrumentation using conventional pedicle screws (CPS; group I) and CBTPS (group II). Radiographic parameters of the deformity angle at the fusion segment and clinical parameter of visual analog scale (VAS) scores were assessed preoperatively, postoperatively, and at the last follow-up.

Results There were 10 patients in each group. The mean follow-up periods of groups I and II were 51.10 ± 6.95 and 28.60 ± 9.31 months, respectively. Intergroup analysis indicated the two groups area age-matched (p = 0.38), but initial C-reactive protein (CRP; mg/dL, p = 0.04), CRP normalization (months, p = 0.00), and follow-up duration (months, p = 0.00) were heterogeneous. Meanwhile, deformity angles (segmental lordosis) between the two groups were not significantly different preoperatively (p = 0.25), postoperatively (p = 0.13), and at last follow-up (p = 0.38). The intragroup analysis indicated a significant postoperative increase of lordosis in both group I and II (p = 0.00 and 0.04, respectively) with subsequent subsidence. Lordosis remained increased at the last follow-up with or without significance (group I, p = 0.02; group II, p = 0.62). Both groups showed significant improvement in VAS scores (group I, p = 0.00; group II, p = 0.00).

Conclusion In monosegmental lumbar spondylodiskitis, posterior stabilization of the anterior strut bone graft by CBTPS and CPS was comparable via the radiographic parameter of segmental lordosis or deformity angle. Our observation suggests the clinical feasibility of CBTPS in the treatment of relatively mild monosegmental pyogenic lumbar spondylodiskitis.



Publication History

Received: 03 February 2021

Accepted: 23 June 2021

Article published online:
12 December 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Danner RL, Hartman BJ. Update on spinal epidural abscess: 35 cases and review of the literature. Rev Infect Dis 1987; 9 (02) 265-274
  • 2 Stäbler A, Reiser MF. Imaging of spinal infection. Radiol Clin North Am 2001; 39 (01) 115-135
  • 3 Tyrrell PN, Cassar-Pullicino VN, McCall IW. Spinal infection. Eur Radiol 1999; 9 (06) 1066-1077
  • 4 Ha KY, Shin JH, Kim KW, Na KH. The fate of anterior autogenous bone graft after anterior radical surgery with or without posterior instrumentation in the treatment of pyogenic lumbar spondylodiscitis. Spine 2007; 32 (17) 1856-1864
  • 5 Santoni BG, Hynes RA, McGilvray KC. et al. Cortical bone trajectory for lumbar pedicle screws. Spine J 2009; 9 (05) 366-373
  • 6 Baluch DA, Patel AA, Lullo B. et al. Effect of physiological loads on cortical and traditional pedicle screw fixation. Spine 2014; 39 (22) E1297-E1302
  • 7 Cheng WK, İnceoğlu S. Cortical and standard trajectory pedicle screw fixation techniques in stabilizing multisegment lumbar spine with low grade spondylolisthesis. Int J Spine Surg 2015; 9: 46
  • 8 Delgado-Fernandez J, García-Pallero MA, Blasco G, Pulido-Rivas P, Sola RG. Review of cortical bone trajectory: evidence of a new technique. Asian Spine J 2017; 11 (05) 817-831
  • 9 Hu JN, Yang XF, Li CM, Li XX, Ding YZ. Comparison of cortical bone trajectory versus pedicle screw techniques in lumbar fusion surgery: a meta-analysis. Medicine (Baltimore) 2019; 98 (33) e16751
  • 10 Kwak DS, Shin JH, Cho HJ, Chang HG, Park MS, Kim IS. Fixation strength of pedicle and cortical lumbar vertebral screws after laminectomy: a cadaver study. J Neurol Surg A Cent Eur Neurosurg 2018; 79 (04) 273-278
  • 11 Li HM, Zhang RJ, Gao H. et al. Biomechanical fixation properties of the cortical bone trajectory in the osteoporotic lumbar spine. World Neurosurg 2018; 119: e717-e727
  • 12 Matsukawa K, Taguchi E, Yato Y. et al. Evaluation of the fixation strength of pedicle screws using cortical bone trajectory: what is the ideal trajectory for optimal fixation?. Spine 2015; 40 (15) E873-E878
  • 13 Matsukawa K, Yato Y. Lumbar pedicle screw fixation with cortical bone trajectory: a review from anatomical and biomechanical standpoints. Spine Surg Relat Res 2017; 1 (04) 164-173
  • 14 Matsukawa K, Yato Y, Imabayashi H, Hosogane N, Asazuma T, Chiba K. Biomechanical evaluation of lumbar pedicle screws in spondylolytic vertebrae: comparison of fixation strength between the traditional trajectory and a cortical bone trajectory. J Neurosurg Spine 2016; 24 (06) 910-915
  • 15 Matsukawa K, Yato Y, Kato T, Imabayashi H, Asazuma T, Nemoto K. In vivo analysis of insertional torque during pedicle screwing using cortical bone trajectory technique. Spine 2014; 39 (04) E240-E245
  • 16 Ninomiya K, Iwatsuki K, Ohnishi Y, Yoshimine T. Radiological evaluation of the initial fixation between cortical bone trajectory and conventional pedicle screw technique for lumbar degenerative spondylolisthesis. Asian Spine J 2016; 10 (02) 251-257
  • 17 Oshino H, Sakakibara T, Inaba T, Yoshikawa T, Kato T, Kasai Y. A biomechanical comparison between cortical bone trajectory fixation and pedicle screw fixation. J Orthop Surg Res 2015; 10: 125
  • 18 Phan K, Hogan J, Maharaj M, Mobbs RJ. Cortical bone trajectory for lumbar pedicle screw placement: a review of published reports. Orthop Surg 2015; 7 (03) 213-221
  • 19 Sansur CA, Caffes NM, Ibrahimi DM. et al. Biomechanical fixation properties of cortical versus transpedicular screws in the osteoporotic lumbar spine: an in vitro human cadaveric model. J Neurosurg Spine 2016; 25 (04) 467-476
  • 20 Snyder LA, Martinez-Del-Campo E, Neal MT. et al. Lumbar spinal fixation with cortical bone trajectory pedicle screws in 79 patients with degenerative disease: perioperative outcomes and complications. World Neurosurg 2016; 88: 205-213
  • 21 Wang J, He X, Sun T. Comparative clinical efficacy and safety of cortical bone trajectory screw fixation and traditional pedicle screw fixation in posterior lumbar fusion: a systematic review and meta-analysis. European Spine J 2019; 28 (07) 1678-1689
  • 22 Zhang RJ, Li HM, Gao H. et al. Cortical bone trajectory screws used to save failed traditional trajectory screws in the osteoporotic lumbar spine and vice versa: a human cadaveric biomechanical study. J Neurosurg Spine 2021; 30 (06) 759-766
  • 23 Hadjipavlou AG, Mader JT, Necessary JT, Muffoletto AJ. Hematogenous pyogenic spinal infections and their surgical management. Spine 2000; 25 (13) 1668-1679
  • 24 Skaf GS, Domloj NT, Fehlings MG. et al. Pyogenic spondylodiscitis: an overview. J Infect Public Health 2010; 3 (01) 5-16
  • 25 Dimar JR, Carreon LY, Glassman SD, Campbell MJ, Hartman MJ, Johnson JR. Treatment of pyogenic vertebral osteomyelitis with anterior debridement and fusion followed by delayed posterior spinal fusion. Spine 2004; 29 (03) 326-332 , discussion 332
  • 26 Hee HT, Majd ME, Holt RT, Pienkowski D. Better treatment of vertebral osteomyelitis using posterior stabilization and titanium mesh cages. J Spinal Disord Tech 2002; 15 (02) 149-156 , discussion 156
  • 27 Korovessis P, Petsinis G, Koureas G, Iliopoulos P, Zacharatos S. Anterior surgery with insertion of titanium mesh cage and posterior instrumented fusion performed sequentially on the same day under one anesthesia for septic spondylitis of thoracolumbar spine: is the use of titanium mesh cages safe?. Spine 2006; 31 (09) 1014-1019
  • 28 Lee JS, Suh KT. Posterior lumbar interbody fusion with an autogenous iliac crest bone graft in the treatment of pyogenic spondylodiscitis. J Bone Joint Surg Br 2006; 88 (06) 765-770
  • 29 Pee YH, Park JD, Choi YG, Lee SH. Anterior debridement and fusion followed by posterior pedicle screw fixation in pyogenic spondylodiscitis: autologous iliac bone strut versus cage. J Neurosurg Spine 2008; 8 (05) 405-412
  • 30 Matsukawa K, Kato T, Yato Y. et al. Incidence and risk factors of adjacent cranial facet joint violation following pedicle screw insertion using cortical bone trajectory technique. Spine 2016; 41 (14) E851-E856
  • 31 Akpolat YT, İnceoğlu S, Kinne N, Hunt D, Cheng WK. Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine 2016; 41 (06) E335-E341
  • 32 Klöckner C, Valencia R. Sagittal alignment after anterior debridement and fusion with or without additional posterior instrumentation in the treatment of pyogenic and tuberculous spondylodiscitis. Spine 2003; 28 (10) 1036-1042
  • 33 Rutges JP, Kempen DH, van Dijk M. et al. Outcome of conservative and surgical treatment of pyogenic spondylodiscitis: a systematic literature review. European Spine J 2016; 25: 983-999
  • 34 Grados F, Lescure FX, Senneville E, Flipo RM, Schmit JL, Fardellone P. Suggestions for managing pyogenic (non-tuberculous) discitis in adults. Joint Bone Spine 2007; 74 (02) 133-139
  • 35 Friedman JA, Maher CO, Quast LM, McClelland RL, Ebersold MJ. Spontaneous disc space infections in adults. Surg Neurol 2002; 57 (02) 81-86
  • 36 Jensen AG, Espersen F, Skinhøj P, Frimodt-Møller N. Bacteremic Staphylococcus aureus spondylitis. Arch Intern Med 1998; 158 (05) 509-517
  • 37 McHenry MC, Easley KA, Locker GA. Vertebral osteomyelitis: long-term outcome for 253 patients from 7 Cleveland-area hospitals. Clin Infect Dis 2002; 34 (10) 1342-1350
  • 38 Dennis S, Watkins R, Landaker S, Dillin W, Springer D. Comparison of disc space heights after anterior lumbar interbody fusion. Spine 1989; 14 (08) 876-878
  • 39 Moon MS, Moon YW, Moon JL, Kim SS, Sun DH. Conservative treatment of tuberculosis of the lumbar and lumbosacral spine. Clin Orthop Relat Res 2002; (398) 40-49
  • 40 Kojima K, Asamoto S, Kobayashi Y, Ishikawa M, Fukui Y. Cortical bone trajectory and traditional trajectory: a radiological evaluation of screw-bone contact. Acta Neurochir (Wien) 2015; 157 (07) 1173-1178