Synthesis 2022; 54(11): 2724-2730
DOI: 10.1055/s-0041-1737534
paper

Preparation of Ring-Methoxylated Arylnitromethanes by the Victor Meyer Reaction

Anna S. Maksimenko
,
Petr A. Buikin
,
Elena D. Daeva
,
,
Victor V. Semenov
The authors are grateful for the financial support from the Russian Science Foundation (Grant No. 18-13-00044-P).


This article is dedicated to the 150th anniversary of the Victor Meyer reaction

Abstract

Easily accessible and stable ring-methoxylated benzyl chlorides react with AgNO2 to give mixtures of the corresponding arylnitromethanes and nitrite esters. A modified approach for the isolation of arylnitromethanes is described, which represents a valuable improvement of the established Victor Meyer reaction. The isolation technique, which involves reaction of the nitrite ester with urea in methanol, allows the desired arylnitromethanes to be isolated, without loss, in 29–75% yields, and generates the corresponding recyclable benzyl alcohols. Unexpectedly, ring-methoxylated benzyl iodides cannot be used because they are not sufficiently stable and produce tars under the developed reaction conditions.

Supporting Information



Publikationsverlauf

Eingereicht: 01. November 2021

Angenommen nach Revision: 10. Januar 2022

Artikel online veröffentlicht:
06. April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ono N. The Nitro Group in Organic Synthesis . Feuer H. John Wiley & Sons; New York: 2001
  • 2 Feuer H. The Chemistry of the Nitro and Nitroso Group . Interscience Publishers; New York: 1969
  • 3 Gonzalez AZ, Eksterowicz J, Bartberger MD, Beck HP, Canon J, Chen A, Chow D, Duquette J, Fox BM, Fu J, Huang X, Houze JB, Jin L, Li Y, Li Z, Ling Y, Lo MC, Long AM, McGee LR, McIntosh J, McMinn DL, Oliner JD, Osgood T, Rew Y, Saiki AY, Shaffer P, Wortman S, Yakowec P, Yan X, Ye Q, Yu D, Zhao X, Zhou J, Olson SH, Medina JC, Sun D. J. Med. Chem. 2014; 57: 2472
  • 4 Nietzold F, Rubner S, Berg T. Chem. Commun. 2019; 55: 14351
  • 5 Fershtat LL, Teslenko FE. Synthesis 2021; 53: 3673
  • 6 Semenova MN, Demchuk DV, Tsyganov DV, Chernysheva NB, Samet AV, Silyanova EA, Kislyi VP, Maksimenko AS, Varakutin AE, Konyushkin LD, Raihstat MM, Kiselyov AS, Semenov VV. ACS Comb. Sci. 2018; 20: 700
  • 7 Silyanova EA, Samet AV, Semenova MN, Semenov VV. Russ. Chem. Bull. 2021; 70: 498
  • 8 Meyer V. Justus Liebigs Ann. Chem. 1874; 171: 1
  • 9 Holleman AP. Recl. Trav. Chim. Pays-Bas 1894; 13: 403
  • 10 Ando K, Shimazu Y, Seki N, Yamataka H. J. Org. Chem. 2011; 76: 3937
  • 11 Alaime T, Delots A, Pasquinet E, Suzenet F, Guillaumet G. Tetrahedron 2016; 72: 1337
  • 12 van Raalte A. Recl. Trav. Chim. Pays-Bas Belg. 1899; 18: 378
  • 13 Kornblum N, Smiley RA, Blackwood RK, Iffland DC. J. Am. Chem. Soc. 1955; 77: 6269
  • 14 Kornblum N, Larson HO, Blackwood RK, Mooberry DD, Oliveto EP, Graham GE. J. Am. Chem. Soc. 1956; 78: 1497
  • 15 Kornblum N, Weaver WM. J. Am. Chem. Soc. 1958; 80: 4333
  • 16 Kornblum N, Gurowitz WD, Larson HO, Hardies DE. J. Am. Chem. Soc. 1960; 82: 3099
  • 17 Suzuki H. Bull. Chem. Soc. Jpn. 1970; 43: 879
  • 18 Ballini R, Barboni L, Giarlo G. J. Org. Chem. 2004; 69: 6907
  • 19 Bug T, Lemek T, Mayr H. J. Org. Chem. 2004; 69: 7565
  • 20 Walvoord RR, Berritt S, Kozlowski MC. Org. Lett. 2012; 14: 4086
  • 21 Baruah A, Kalita B, Barua NC. Synlett 2000; 1064
  • 22 Mąkosza M, Barbasiewicz M, Wojciechowski K. Synlett 2001; 1121
  • 23 Hauser FM, Baghdanov VM. J. Org. Chem. 1988; 53: 2872
  • 24 Sedelmeier J, Ley SV, Baxendale IR, Baumann M. Org. Lett. 2010; 12: 3618
  • 25 Maksimenko AS, Koblov I, Chernysheva NB, Kislyi VP, Semenov VV. Mendeleev Commun. 2021; 31: 818
  • 26 Matviitsuk A, Greenhalgh MD, Taylor JE, Nguyen XB, Cordes DB, Slawin AM. Z, Lupton DW, Smith AD. Org. Lett. 2020; 22: 335
  • 27 Occhipinti G, Liguori L, Tsoukala A, Bjørsvik HR. Org. Process Res. Dev. 2010; 14: 1379
  • 28 Nishiwaki Y, Sakaguchi S, Ishii Y. J. Org. Chem. 2002; 67: 5663
  • 29 Suzuki H, Murashima T, Kozai I, Mori T. J. Chem. Soc., Perkin Trans. 1 1993; 1591
  • 30 Semenov VV, Semenova MN. Russ. Chem. Rev. 2015; 84: 134
  • 31 Masnovi JM, Sankararaman S, Kochi JK. J. Am. Chem. Soc. 1989; 111: 2263
  • 32 Brown HW, Hollis DP. J. Mol. Spectrosc. 1964; 13: 305
  • 33 Axenrod T, Wieder MJ, Milne GW. A. Tetrahedron Lett. 1969; 10: 1397
  • 34 Galloway JD, Sarabia C, Fettinger JC, Hratchian HP, Baxter RD. Org. Lett. 2021; 23: 3253
  • 35 Matt C, Gissot A, Wagner A, Mioskowski C. Tetrahedron Lett. 2000; 41: 1191
  • 36 Chang RK, Kim K. Tetrahedron Lett. 1996; 37: 7791
  • 37 Charlton W, Earl JC, Kenner J, Luciano AA. J. Chem. Soc. 1932; 30
  • 38 Pinnick HW. Org. React. 1990; 38: 655
  • 39 Fruttero R, Ferrarotti B, Gasco A, Calestani G, Rizzoli C. Liebigs Ann. Chem. 1988; 1017
  • 40 Shaposhnikov SD, Romanova TV, Spiridonova NP, Mel’nikova SF, Tselinskii IV. Russ. J. Org. Chem. 2004; 40: 884
  • 41 Leonard PW, Pollard CJ, Chavez DE, Rice BM, Parrish DA. Synlett 2011; 2097
  • 42 Nicoletti TM, Raston CL, Sargent MV. J. Chem. Soc., Perkin Trans. 1 1990; 133
  • 43 Salmón M, Zavala N, Martínez M, Miranda R, Cruz R, Cárdenas J, Gaviño R, Cabrera A. Tetrahedron Lett. 1994; 35: 5797
  • 44 Wang D, Ivanov MV, Mirzaei S, Lindeman SV, Rathore R. Org. Biomol. Chem. 2018; 16: 5712
  • 45 Fuchs R, Carlton DM. J. Org. Chem. 1962; 27: 1520
  • 46 Huy PH, Filbrich I. Chem. Eur. J. 2018; 24: 7410
  • 47 Mikstacka R, Wierzchowski M, Dutkiewicz Z, Gielara-Korzańska A, Korzański A, Teubert A, Sobiak S, Baer-Dubowska W. MedChemComm 2014; 5: 496
  • 48 Musso H, Maassen D, Bormann D. Chem. Ber. 1962; 2837
  • 49 Walvoord RR, Kozlowski MC. J. Org. Chem. 2013; 78: 8859
  • 50 Vara BA, Mayasundari A, Tellis JC, Danneman MW, Arredondo V, Davis TA, Min J, Finch K, Guy RK, Johnston JN. J. Org. Chem. 2014; 79: 6913
  • 51 Combe SH, Hosseini A, Song L, Hausmann H, Schreiner PR. Org. Lett. 2017; 19: 6156