Synthesis 2022; 54(18): 3999-4004
DOI: 10.1055/s-0041-1737490
paper

Continuous Flow Microreactor Promoted the Catalytic N-Oxidation Reaction of Pyridine Derivatives

Siyuan Chen
a   Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
,
Shanxiu Yang
b   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
,
Hao Wang
b   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
,
Yanning Niu
c   Department of Teaching and Research, Nanjing Forestry University, Huaian, 223003, P. R. China
,
Zhang Zhang
a   Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
,
Bo Qian
b   State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
› Author Affiliations
This research was supported by the Chinese Academy of Sciences, ‘Light of West China’ Program and PetroChina Innovation Foundation.


Abstract

A simple continuous flow microreactor was successfully constructed for the N-oxidation of pyridine. The continuous flow microreactor used titanium silicalite (TS-1) in a packed-bed microreactor and H2O2 (in methanol as solvent) as the catalytic oxidation system for the formation of various pyridine N-oxides in up to 99% yields. This process is a safer, greener, and more highly efficiency process than using a batch reactor. The device was used for over 800 hours of continuous operation with the catalyst maintaining great activity thus providing great potential for large-scale production.

Supporting Information



Publication History

Received: 16 March 2022

Accepted after revision: 26 April 2022

Article published online:
02 June 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Li D, Wu P, Sun N, Lu Y.-J, Wong W.-L, Fang Z, Zhang K. Curr. Org. Chem. 2019; 23: 616

    • The application of pyridine N-oxides in organic intermediates:
    • 2a Tan Y, Barrios-Landeros F, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 3683
    • 2b Talbot EP. A, Richardson M, McKenna JM, Toste FD. Adv. Synth. Catal. 2014; 356: 687
    • 2c Jones DH, Kay ST, McLellan JA, Kennedy AR, Tomkinson NC. O. Org. Lett. 2017; 19: 3512
    • 2d Zhong J, Long Y, Yan X, He S, Ye R, Xiang H, Zhou X. Org. Lett. 2019; 21: 9790
    • 2e Jiao L.-Y, Yin X.-M, Liu S, Zhang Z, Sun M, Ma X.-X. Catal. Commun. 2020; 135: 105889

      The application of pyridine N-oxides in oxidants:
    • 3a Wang K.-B, Ran R.-Q, Xiu S.-D, Li C.-Y. Org. Lett. 2013; 15: 2374
    • 3b Harris RJ, Widenhoefer RA. Angew. Chem. Int. Ed. 2014; 53: 9369
    • 3c Okugawa Y, Hirano K, Miura M. Angew. Chem. Int. Ed. 2016; 55: 13558
    • 3d Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CR. J. Chem 2016; 1: 456

      The application of pyridine N-oxides in ligands:
    • 4a Beyeh NK, Puttreddy R. Dalton Trans. 2015; 44: 9881
    • 4b Ouizem S, Rosario-Amorin D, Dickie DA, Hay BP, Paine RT. Polyhedron 2015; 101: 37
    • 4c Ishihara K, Lu Y. Chem. Sci. 2016; 7: 1276
    • 4d Lynch W, Lynch G, Sheriff K, Padgett C. Acta Crystallogr., Sect. E 2018; 74: 1405

      The application of pyridine N-oxides in catalysts:
    • 5a Zhou L, Zhang M, Li W, Zhang J. Angew. Chem. Int. Ed. 2014; 53: 6542
    • 5b Yoshida K, Takao K.-i. Tetrahedron Lett. 2014; 55: 6861
    • 5c Fukumoto Y, Okazaki N, Chatani N. Org. Lett. 2019; 21: 1760

      The application of pyridine N-oxides in drugs:
    • 6a Balzarini J, Stevens M, De Clercq E, Schols D, Pannecouque C. J. Antimicrob. Chemother. 2005; 55: 135
    • 6b Stevens M, Pannecouque C, De Clercq E, Balzarini J. Biochem. Pharmacol. 2006; 71: 1122
    • 6c Gerisch M, Hafner F.-T, Lang D, Radtke M, Diefenbach K, Cleton A, Lettieri J. Cancer Chemother. Pharmacol. 2018; 81: 195
    • 6d Kaieda A, Takahashi M, Takai T, Goto M, Miyazaki T, Hori Y, Unno S, Kawamoto T, Tanaka T, Itono S, Takagi T, Hamada T, Shirasaki M, Okada K, Snell G, Bragstad K, Sang B.-C. Bioorg. Med. Chem. 2018; 26: 647

      The application of pyridine N-oxides in materials:
    • 7a Raja V, Sharma AK, Narasimha Rao VV. R. Mater. Lett. 2004; 58: 3242
    • 7b Chen M, Han S, Jiang L, Zhou S, Jiang F, Xu Z, Liang J, Zhang S. Chem. Commun. 2010; 46: 3932
    • 7c Chi X, Zhang H, Vargas-Zúñiga GI, Peters GM, Sessler JL. J. Am. Chem. Soc. 2016; 138: 5829
    • 7d Stross AE, Iadevaia G, Hunter CA. Chem. Sci. 2016; 7: 5686
    • 7e Hu L, Lin X.-M, Mo J.-T, Gan H.-L, Yang X.-L, Cai Y.-P. Inorg. Chem. 2017; 56: 4289

      The preparation of pyridine N-oxides with strong oxidants:
    • 8a Kress T. J. Org. Chem. 1985; 50: 3073
    • 8b Brougham P, Cooper MS, Cummerson DA, Heaney H, Thomson N. Synthesis 1987; 1015
    • 8c Zhang H, Huang C.-H. Environ. Sci. Technol. 2005; 39: 593
    • 8d Zhu X, Kreutter KD, Hu H, Player MR, Gaul MD. Tetrahedron Lett. 2008; 49: 832

      The preparation of pyridine N-oxides with H2O2 in acetic acid:
    • 9a Mosher HS, Turner L, Carlsmith A. Org. Synth. 1953; 33: 79
    • 9b Bockelhe V, Linn WJ. J. Am. Chem. Soc. 1954; 76: 1286
    • 9c Ritter H, Licht HH. J. Heterocycl. Chem. 1995; 32: 585
    • 9d Hollins RA, Merwin LH, Nissan RA, Wilson WS. J. Heterocycl. Chem. 1996; 33: 895

      Catalytic methods for the N-oxidation reaction of pyridine:
    • 10a Copéret C, Adolfsson H, Khuong TV, Yudin AK, Sharpless KB. J. Org. Chem. 1998; 63: 1740
    • 10b Neimann K, Neumann R. Chem. Commun. 2001; 487
    • 10c Robinson DJ, McMorn P, Bethell D, Bulman-Page PC, Sly C, King F, Hancock FE, Hutchings GJ. Catal. Lett. 2001; 72: 233
    • 10d Rout L, Punniyamurthy T. Adv. Synth. Catal. 2005; 347: 1958
    • 10e Xie W, Zheng Y, Zhao S, Yang J, Liu Y, Wu P. Catal. Today 2010; 157: 114
    • 10f Zhao W, Yang C. New J. Chem. 2013; 37: 1867
    • 10g Yang F, Zhang X, Li F, Wang Z, Wang L. Green Chem. 2016; 18: 3518

      The risk for the utilization of H2O2 in batch reaction:
    • 11a Chen KY, Lin CM, Shu CM, Kao CS. J. Therm. Anal. Calorim. 2006; 85: 87
    • 11b Kertalli E, van Rijnsoever LS, Paunovic V, Neira d’Angelo MF, Schouten JC, Nijhuis TA. Chem. Eng. Sci. 2016; 165: 36
    • 11c Fukuzumi S, Lee Y.-M, Nam W. Chin. J. Catal. 2021; 42: 1241
    • 11d Targhan H, Evans P, Bahrami K. J. Ind. Eng. Chem. 2021; 104: 295

      Selected reviews for continuous flow microreaction:
    • 12a Jähnisch K, Hessel V, Löwe H, Baerns M. Angew. Chem. Int. Ed. 2004; 43: 406
    • 12b Kiwi-Minsker L, Renken A. Catal. Today 2005; 110: 2
    • 12c Gascon J, van Ommen JR, Moulijn JA, Kapteijn F. Catal. Sci. Technol. 2015; 5: 807
    • 12d Ötvös SB, Kappe OC. Green Chem. 2021; 23: 6117
    • 12e Fu WC, MacQueen PM, Jamison TF. Chem. Soc. Rev. 2021; 50: 7378
  • 13 Klassen NV, Marchlngton D, McGowan HC. E. Anal. Chem. 1994; 66: 2921
  • 14 Wang Y, Li H, Liu W, Lin Y, Han X, Wang Z. Trans. Tianjin Univ. 2018; 24: 25