CC BY-NC-ND 4.0 · European Journal of General Dentistry 2021; 10(02): 106-115
DOI: 10.1055/s-0041-1735766
Review Article

Hybrid Implant Abutments: A Literature Review

Azam Sadat Mostafavi
1   Department of Prosthodontics and Dental Research Center, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
,
Hamid Mojtahedi
2   Oral and Maxillofacial Surgery Department, Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
,
Afrooz Javanmard
3   Department of Prosthodontics, Faculty of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
› Author Affiliations

Abstract

Ceramic implant abutments are becoming increasingly popular due to the growing esthetic demands of patients. Two-piece ceramic abutments have the advantages of both ceramic and titanium abutments. This study aimed to review the published articles regarding hybrid abutments and their characteristics.

Published articles regarding two-piece abutments were retrieved by electronic search of PubMed, Embase, Scopus, Medline, and Google Scholar databases using certain keywords. Articles highly relevant to our topic of interest were selected and reviewed.

The presence of titanium inserts in hybrid abutments can overcome the brittleness of ceramic, increase the overall fracture resistance, prevent the implant connection wear, and provide better marginal fit compared with one-piece zirconia abutments. Hybrid abutments enable the fabrication of monolithic metal-free implant restorations with optimal esthetics. Furthermore, the risk of porcelain chipping, which is a common complication of implant restorations, is eliminated due to the monolithic structure of these restorations.

According to the available literature, hybrid implant abutments have shown promising results with regard to optimal esthetics in the rehabilitation of the esthetic zone. However, long-term clinical studies are required to assess the long-term durability of all-ceramic restorations supported by hybrid abutments.



Publication History

Article published online:
14 September 2021

© 2021. European Journal of General Dentistry. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India

 
  • References

  • 1 Sailer I, Zembic A, Jung RE, Hämmerle CH, Mattiola A. Single-tooth implant reconstructions: esthetic factors influencing the decision between titanium and zirconia abutments in anterior regions. Eur J Esthet Dent 2007; 2 (03) 296-310
  • 2 Elsayed A, Wille S, Al-Akhali M, Kern M. Comparison of fracture strength and failure mode of different ceramic implant abutments. J Prosthet Dent 2017; 117 (04) 499-506
  • 3 Gehrke P, Johannson D, Fischer C, Stawarczyk B, Beuer F. In vitro fatigue and fracture resistance of one- and two-piece CAD/CAM zirconia implant abutments. Int J Oral Maxillofac Implants 2015; 30 (03) 546-554
  • 4 Guilherme NM, Chung KH, Flinn BD, Zheng C, Raigrodski AJ. Assessment of reliability of CAD-CAM tooth-colored implant custom abutments. J Prosthet Dent 2016; 116 (02) 206-213
  • 5 Elsayed A, Wille S, Al-Akhali M, Kern M. Effect of fatigue loading on the fracture strength and failure mode of lithium disilicate and zirconia implant abutments. Clin Oral Implants Res 2018; 29 (01) 20-27
  • 6 Baldassarri M, Hjerppe J, Romeo D, Fickl S, Thompson VP, Stappert CFJ. Marginal accuracy of three implant-ceramic abutment configurations. Int J Oral Maxillofac Implants 2012; 27 (03) 537-543
  • 7 Cavusoglu Y, Akça K, Gürbüz R, Cehreli MC. A pilot study of joint stability at the zirconium or titanium abutment/titanium implant interface. Int J Oral Maxillofac Implants 2014; 29 (02) 338-343
  • 8 Stimmelmayr M, Edelhoff D, Güth JF, Erdelt K, Happe A, Beuer F. Wear at the titanium-titanium and the titanium-zirconia implant-abutment interface: a comparative in vitro study. Dent Mater 2012; 28 (12) 1215-1220
  • 9 Chun H-J, Yeo IS, Lee JH. et al Fracture strength study of internally connected zirconia abutments reinforced with titanium inserts. Int J Oral Maxillofac Implants 2015; 30 (02) 346-350
  • 10 Chee W, Felton DA, Johnson PF, Sullivan DY. Cemented versus screw-retained implant prostheses: which is better?. Int J Oral Maxillofac Implants 1999; 14 (01) 137-141
  • 11 Gervais MJ, Wilson PR. A rationale for retrievability of fixed, implant-supported prostheses: a complication-based analysis. Int J Prosthodont 2007; 20 (01) 13-24
  • 12 Hussien ANM, Rayyan MM, Sayed NM, Segaan LG, Goodacre CJ, Kattadiyil MT. Effect of screw-access channels on the fracture resistance of 3 types of ceramic implant-supported crowns. J Prosthet Dent 2016; 116 (02) 214-220
  • 13 Lee A, Okayasu K, Wang H-L. Screw- versus cement-retained implant restorations: current concepts. Implant Dent 2010; 19 (01) 8-15
  • 14 Hebel KS, Gajjar RC. Cement-retained versus screw-retained implant restorations: achieving optimal occlusion and esthetics in implant dentistry. J Prosthet Dent 1997; 77 (01) 28-35
  • 15 Sailer I, Mühlemann S, Zwahlen M, Hämmerle CHF, Schneider D. Cemented and screw-retained implant reconstructions: a systematic review of the survival and complication rates. Clin Oral Implants Res 2012; 23 (Suppl. 06) 163-201
  • 16 Rajan M, Gunaseelan R. Fabrication of a cement- and screw-retained implant prosthesis. J Prosthet Dent 2004; 92 (06) 578-580
  • 17 Guichet DL, Caputo AA, Choi H, Sorensen JA. Passivity of fit and marginal opening in screw- or cement-retained implant fixed partial denture designs. Int J Oral Maxillofac Implants 2000; 15 (02) 239-246
  • 18 Wilson TG Jr, Valderrama P, Burbano M. et al Foreign bodies associated with peri-implantitis human biopsies. J Periodontol 2015; 86 (01) 9-15
  • 19 Pauletto N, Lahiffe BJ, Walton JN. Complications associated with excess cement around crowns on osseointegrated implants: a clinical report. Int J Oral Maxillofac Implants 1999; 14 (06) 865-868
  • 20 Gapski R, Neugeboren N, Pomeranz AZ, Reissner MW. Endosseous implant failure influenced by crown cementation: a clinical case report. Int J Oral Maxillofac Implants 2008; 23 (05) 943-946
  • 21 McGlumphy EA, Papazoglou E, Riley RL. The combination implant crown: a cement- and screw-retained restoration. Compendium 1992; 13 (01) 34-36, 38 passim
  • 22 Uludag B, Celik G. Fabrication of a cement- and screw-retained multiunit implant restoration. J Oral Implantol 2006; 32 (05) 248-250
  • 23 Park JI, Lee Y, Lee JH, Kim YL, Bae JM, Cho HW. Comparison of fracture resistance and fit accuracy of customized zirconia abutments with prefabricated zirconia abutments in internal hexagonal implants. Clin Implant Dent Relat Res 2013; 15 (05) 769-778
  • 24 Kim S, Kim HI, Brewer JD. Monaco EA Jr. Comparison of fracture resistance of pressable metal ceramic custom implant abutments with CAD/CAM commercially fabricated zirconia implant abutments. J Prosthet Dent 2009; 101 (04) 226-230
  • 25 Martínez-Rus F, Ferreiroa A, Özcan M, Bartolomé JF, Pradíes G. Fracture resistance of crowns cemented on titanium and zirconia implant abutments: a comparison of monolithic versus manually veneered all-ceramic systems. Int J Oral Maxillofac Implants 2012; 27 (06) 1448-1455
  • 26 Fabbri G, Fradeani M, Dellificorelli G. De Lorenzi M, Zarone F, Sorrentino R. Clinical Evaluation of the Influence of Connection Type and Restoration Height on the Reliability of Zirconia Abutments: A Retrospective Study on 965 Abutments with a Mean 6-Year Follow-Up. Int J Periodontics Restorative Dent 2017; 37 (01) 19-31
  • 27 Edelhoff D, Schweiger J, Prandtner O, Stimmelmayr M, Güth JF. Metal-free implant-supported single-tooth restorations. Part II: hybrid abutment crowns and material selection. Quintessence Int 2019; 50 (04) 260-269
  • 28 Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008; 24 (03) 299-307
  • 29 Albakry M, Guazzato M, Swain MV. Biaxial flexural strength, elastic moduli, and x-ray diffraction characterization of three pressable all-ceramic materials. J Prosthet Dent 2003; 89 (04) 374-380
  • 30 Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004; 20 (05) 441-448
  • 31 Kurtulmus-Yilmaz S, Ulusoy M. Comparison of the translucency of shaded zirconia all-ceramic systems. J Adv Prosthodont 2014; 6 (05) 415-422
  • 32 Della A Bona, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated ceramic-network material. Dent Mater 2014; 30 (05) 564-569
  • 33 Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent 2015; 114 (04) 587-593
  • 34 Duarte S, Sartori N, Phark J-H. Ceramic-reinforced polymers: CAD/CAM hybrid restorative materials. Curr Oral Health Rep 2016; 3 (03) 198-202
  • 35 Vita Enamic Implant Solutions. Available at: https://cdn.vivarep.com/contrib/vivarep/media/pdf/4_4646_ENAMICImplantSolutionsBrochure_20170830210817381.pdf. Accessed August 4, 2021
  • 36 Invoclar Vivadent. Available at: https://www.ivoclarvivadent.com/en/p/all/telio-cad/telio-cad. Accessed August 4, 2021
  • 37 VITA CAD-Temp IS. Available at: https://www.vita-zahnfabrik.com/en/Dentist-Solutions/CAD/CAM-fabrication/Implant-supported-restorations/VITA-CAD-Temp-IS-38740,27568.html. Accessed August 4, 2021
  • 38 Ebert A, Hedderich J, Kern M. Retention of zirconia ceramic copings bonded to titanium abutments. Int J Oral Maxillofac Implants 2007; 22 (06) 921-927
  • 39 Moon J-E, Kim S-H, Lee J-B. et al Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement. Ceram Int 2016; 42 (01) 1552-1562
  • 40 Garcia Fonseca R, de Oliveira Abi-Rached F, dos Santos Nunes Reis JM, Rambaldi E, Baldissara P. Effect of particle size on the flexural strength and phase transformation of an airborne-particle abraded yttria-stabilized tetragonal zirconia polycrystal ceramic. J Prosthet Dent 2013; 110 (06) 510-514
  • 41 Zhang Y, Pajares A, Lawn BR. Fatigue and damage tolerance of Y-TZP ceramics in layered biomechanical systems. J Biomed Mater Res B Appl Biomater 2004; 71 (01) 166-171
  • 42 Skienhe H, Habchi R, Ounsi H, Ferrari M, Salameh Z. Evaluation of the effect of different types of abrasive surface treatment before and after zirconia sintering on its structural composition and bond strength with resin cement. BioMed Res Int 2018; 2018: 1803425 doi: 10.1155/2018/1803425
  • 43 Hallmann L, Ulmer P, Lehmann F. et al Effect of surface modifications on the bond strength of zirconia ceramic with resin cement resin. Dent Mater 2016; 32 (05) 631-639
  • 44 Song J-Y, Park SW, Lee K, Yun KD, Lim HP. Fracture strength and microstructure of Y-TZP zirconia after different surface treatments. J Prosthet Dent 2013; 110 (04) 274-280
  • 45 Özcan M, Melo RM, Souza RO, Machado JP, Felipe Valandro L, Botttino MA. Effect of air-particle abrasion protocols on the biaxial flexural strength, surface characteristics and phase transformation of zirconia after cyclic loading. J Mech Behav Biomed Mater 2013; 20: 19-28
  • 46 de Oyagüe RC, Monticelli F, Toledano M, Osorio E, Ferrari M, Osorio R. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic. Dent Mater 2009; 25 (02) 172-179
  • 47 Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials. J Prosthet Dent 2007; 98 (05) 379-388
  • 48 Akhavan Zanjani V, Ahmadi H, Nateghifard A. et al Effect of different laser surface treatment on microshear bond strength between zirconia ceramic and resin cement. J Investig Clin Dent 2015; 6 (04) 294-300
  • 49 Jevnikar P, Krnel K, Kocjan A, Funduk N, Kosmac T. The effect of nano-structured alumina coating on resin-bond strength to zirconia ceramics. Dent Mater 2010; 26 (07) 688-696
  • 50 Blatz MB, Chiche G, Holst S, Sadan A. Influence of surface treatment and simulated aging on bond strengths of luting agents to zirconia. Quintessence Int 2007; 38 (09) 745-753
  • 51 Elsayed A, Younes F, Lehmann F, Kern M. Tensile bond strength of so-called universal primers and universal multimode adhesives to zirconia and lithium disilicate ceramics. J Adhes Dent 2017; 19 (03) 221-228
  • 52 Mehl C, Zhang Q, Lehmann F, Kern M. Retention of zirconia on titanium in two-piece abutments with self-adhesive resin cements. J Prosthet Dent 2018; 120 (02) 214-219
  • 53 Ozcan M, Nijhuis H, Valandro LF. Effect of various surface conditioning methods on the adhesion of dual-cure resin cement with MDP functional monomer to zirconia after thermal aging. Dent Mater J 2008; 27 (01) 99-104
  • 54 Colares RC, Neri JR, Souza AM, Pontes KM, Mendonça JS, Santiago SL. Effect of surface pretreatments on the microtensile bond strength of lithium-disilicate ceramic repaired with composite resin. Braz Dent J 2013; 24 (04) 349-352
  • 55 Kursoglu P, Motro PFK, Yurdaguven H. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface. J Adv Prosthodont 2013; 5 (02) 98-103
  • 56 Nagai T, Kawamoto Y, Kakehashi Y, Matsumura H. Adhesive bonding of a lithium disilicate ceramic material with resin-based luting agents. J Oral Rehabil 2005; 32 (08) 598-605
  • 57 Türk T, Saraç D, Saraç YS, Elekdağ-Türk S. Effects of surface conditioning on bond strength of metal brackets to all-ceramic surfaces. Eur J Orthod 2006; 28 (05) 450-456
  • 58 Kiyan VH, Saraceni CH, da BL Silveira, Aranha AC, Eduardo CdaP. The influence of internal surface treatments on tensile bond strength for two ceramic systems. Oper Dent 2007; 32 (05) 457-465
  • 59 Kim B-K, Bae HE, Shim JS, Lee KW. The influence of ceramic surface treatments on the tensile bond strength of composite resin to all-ceramic coping materials. J Prosthet Dent 2005; 94 (04) 357-362
  • 60 Panah FG, Rezai SMM, Ahmadian L. The influence of ceramic surface treatments on the micro-shear bond strength of composite resin to IPS Empress 2. J Prosthodont 2008; 17 (05) 409-414
  • 61 Brum R, Mazur R, Almeida J, Borges G, Caldas D. The influence of surface standardization of lithium disilicate glass ceramic on bond strength to a dual resin cement. Oper Dent 2011; 36 (05) 478-485
  • 62 Lise DP, Perdigão J, Van Ende A, Zidan O, Lopes GC. Microshear bond strength of resin cements to lithium disilicate substrates as a function of surface preparation. Oper Dent 2015; 40 (05) 524-532
  • 63 Menees TS, Lawson NC, Beck PR, Burgess JO. Influence of particle abrasion or hydrofluoric acid etching on lithium disilicate flexural strength. J Prosthet Dent 2014; 112 (05) 1164-1170
  • 64 Della A Bona, Anusavice KJ. Microstructure, composition, and etching topography of dental ceramics. Int J Prosthodont 2002; 15 (02) 159-167
  • 65 Abi-Rached FdeO, Fonseca RG, Haneda IG, de Almeida-Júnior AA, Adabo GL. The effect of different surface treatments on the shear bond strength of luting cements to titanium. J Prosthet Dent 2012; 108 (06) 370-376
  • 66 Fonseca RG, Haneda IG, Almeida-Júnior AA, de Oliveira Abi-Rached F, Adabo GL. Efficacy of air-abrasion technique and additional surface treatment at titanium/resin cement interface. J Adhes Dent 2012; 14 (05) 453-459
  • 67 Guilherme N, Wadhwani C, Zheng C, Chung KH. Effect of surface treatments on titanium alloy bonding to lithium disilicate glass-ceramics. J Prosthet Dent 2016; 116 (05) 797-802
  • 68 Egoshi T, Taira Y, Soeno K, Sawase T. Effects of sandblasting, H2SO4/HCl etching, and phosphate primer application on bond strength of veneering resin composite to commercially pure titanium grade 4. Dent Mater J 2013; 32 (02) 219-227
  • 69 Linkevicius T, Caplikas A, Dumbryte I, Linkeviciene L, Svediene O. Retention of zirconia copings over smooth and airborne-particle-abraded titanium bases with different resin cements. J Prosthet Dent 2019; 121 (06) 949-954
  • 70 von Maltzahn NF, Holstermann J, Kohorst P. Retention forces between titanium and zirconia components of two-part implant abutments with different techniques of surface modification. Clin Implant Dent Relat Res 2016; 18 (04) 735-744
  • 71 Qeblawi DM, Muñoz CA, Brewer JD, Monaco Jr EA. The effect of zirconia surface treatment on flexural strength and shear bond strength to a resin cement. J Prosthet Dent 2010; 103 (04) 210-220
  • 72 Blatz MB, Phark JH, Ozer F. et al In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. Clin Oral Investig 2010; 14 (02) 187-192
  • 73 Bernal G, Okamura M, Muñoz CA. The effects of abutment taper, length and cement type on resistance to dislodgement of cement-retained, implant-supported restorations. J Prosthodont 2003; 12 (02) 111-115
  • 74 Abbo B, Razzoog ME, Vivas J, Sierraalta M. Resistance to dislodgement of zirconia copings cemented onto titanium abutments of different heights. J Prosthet Dent 2008; 99 (01) 25-29
  • 75 Cano-Batalla J, Soliva-Garriga J, Campillo-Funollet M, Munoz-Viveros CA, Giner-Tarrida L. Influence of abutment height and surface roughness on in vitro retention of three luting agents. Int J Oral Maxillofac Implants 2012; 27 (01) 36-41
  • 76 Silva CEP, Soares S, Machado CM. et al Effect of CAD/CAM abutment height and cement type on the retention of zirconia crowns. Implant Dent 2018; 27 (05) 582-587
  • 77 Mehl C, Harder S, Steiner M, Vollrath O, Kern M. Influence of cement film thickness on the retention of implant-retained crowns. J Prosthodont 2013; 22 (08) 618-625
  • 78 Nejatidanesh F, Savabi O, Jabbari E. Effect of surface treatment on the retention of implant-supported zirconia restorations over short abutments. J Prosthet Dent 2014; 112 (01) 38-44
  • 79 Nejatidanesh F, Savabi O, Shahtoosi M. Retention of implant-supported zirconium oxide ceramic restorations using different luting agents. Clin Oral Implants Res 2013; 24 (Suppl A100) 20-24
  • 80 Abrahamsson I, Berglundh T, Glantz PO, Lindhe J. The mucosal attachment at different abutments. An experimental study in dogs. J Clin Periodontol 1998; 25 (09) 721-727
  • 81 Mehl C, Gassling V, Schultz-Langerhans S. et al Influence of four different abutment materials and the adhesive joint of two-piece abutments on cervical implant bone and soft tissue. Int J Oral Maxillofac Implants 2016; 31 (06) 1264-1272
  • 82 Mehl C, Kern M, Schütte AM. Kadem LF, Selhuber-Unkel C. Adhesion of living cells to abutment materials, dentin, and adhesive luting cement with different surface qualities. Dent Mater 2016; 32 (12) 1524-1535
  • 83 Alsahhaf A, Spies BC, Vach K, Kohal RJ. Fracture resistance of zirconia-based implant abutments after artificial long-term aging. J Mech Behav Biomed Mater 2017; 66: 224-232
  • 84 Conejo J, Kobayashi T, Anadioti E, Blatz MB. Performance of CAD/CAM monolithic ceramic implant-supported restorations bonded to titanium inserts: a systematic review. Eur J Oral Implantology 2017; 10 (Suppl. 01) 139-146
  • 85 Nouh I, Kern M, Sabet AE, Aboelfadl AK, Hamdy AM, Chaar MS. Mechanical behavior of posterior all-ceramic hybrid-abutment-crowns versus hybrid-abutments with separate crowns-a laboratory study. Clin Oral Implants Res 2019; 30 (01) 90-98
  • 86 Roberts EE, Bailey CW, Ashcraft-Olmscheid DL, Vandewalle KS. Fracture resistance of titanium-based lithium disilicate and zirconia implant restorations. J Prosthodont 2018; 27 (07) 644-650
  • 87 Pjetursson BE, Karoussis I, Bürgin W, Brägger U, Lang NP. Patients’ satisfaction following implant therapy. A 10-year prospective cohort study. Clin Oral Implants Res 2005; 16 (02) 185-193
  • 88 Rosentritt M, Rembs A, Behr M, Hahnel S, Preis V. In vitro performance of implant-supported monolithic zirconia crowns: Influence of patient-specific tooth-coloured abutments with titanium adhesive bases. J Dent 2015; 43 (07) 839-845
  • 89 Gehrke P, Alius J, Fischer C, Erdelt KJ, Beuer F. Retentive strength of two-piece CAD/CAM zirconia implant abutments. Clin Implant Dent Relat Res 2014; 16 (06) 920-925
  • 90 Bankoğlu Güngör M, Karakoca Nemli S. The effect of resin cement type and thermomechanical aging on the retentive strength of custom zirconia abutments bonded to titanium inserts. Int J Oral Maxillofac Implants 2018; 33 (03) 523-529
  • 91 Zenthöfer A, Rues S, Krisam J, Rustemeyer R, Rammelsberg P, Schmitter M. Debonding forces for two-piece zirconia abutments with implant platforms of different diameter and use of different luting strategies. Int J Oral Maxillofac Implants 2018; 33 (05) 1041-1046
  • 92 Freifrau von Maltzahn N, Bernard S, Kohorst P. Two-part implant abutments with titanium and ceramic components: surface modification affects retention forces-an in-vitro study. Clin Oral Implants Res 2019; 30 (09) 903-909
  • 93 Nilsson A, Johansson LÅ, Lindh C, Ekfeldt A. One-piece internal zirconia abutments for single-tooth restorations on narrow and regular diameter implants: a 5-year prospective follow-up study. Clin Implant Dent Relat Res 2017; 19 (05) 916-925
  • 94 Sui X, Wei H, Wang D. et al Experimental research on the relationship between fit accuracy and fracture resistance of zirconia abutments. J Dent 2014; 42 (10) 1353-1359
  • 95 Ti bases for zirconia abutments. Available at: https://lmtmag.com/products/1686. Accessed August 4, 2021
  • 96 https://www.ivoclarvivadent.com/en/p/all/ips-emax- system-dentists/ips-emax-cad-chairside#
  • 97 Dentsply Sirona. CEREC mining and grinding units. Available at: https://my.cerec.com/en-us/products/milling-grinding.html, Accessed August 4, 2021