Open Access
CC BY-NC-ND 4.0 · Indian J Med Paediatr Oncol 2021; 42(06): 511-517
DOI: 10.1055/s-0041-1735577
Review Article

Artificial Intelligence: A New Tool in Oncologist's Armamentarium

Vineet Talwar
1   Department of Medical Oncology, Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, India
,
Kundan Singh Chufal
2   Department of Radiation Oncology, Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, India
,
Srujana Joga
1   Department of Medical Oncology, Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, India
› Author Affiliations
Preview

Abstract

Artificial intelligence (AI) has become an essential tool in human life because of its pivotal role in communications, transportation, media, and social networking. Inspired by the complex neuronal network and its functions in human beings, AI, using computer-based algorithms and training, had been explored since the 1950s. To tackle the enormous amount of patients' clinical data, imaging, histopathological data, and the increasing pace of research on new treatments and clinical trials, and ever-changing guidelines for treatment with the advent of novel drugs and evidence, AI is the need of the hour. There are numerous publications and active work on AI's role in the field of oncology. In this review, we discuss the fundamental terminology of AI, its applications in oncology on the whole, and its limitations. There is an inter-relationship between AI, machine learning and, deep learning. The virtual branch of AI deals with machine learning. While the physical branch of AI deals with the delivery of different forms of treatment—surgery, targeted drug delivery, and elderly care. The applications of AI in oncology include cancer screening, diagnosis (clinical, imaging, and histopathological), radiation therapy (image acquisition, tumor and organs at risk segmentation, image registration, planning, and delivery), prediction of treatment outcomes and toxicities, prediction of cancer cell sensitivity to therapeutics and clinical decision-making. A specific area of interest is in the development of effective drug combinations tailored to every patient and tumor with the help of AI. Radiomics, the new kid on the block, deals with the planning and administration of radiotherapy. As with any new invention, AI has its fallacies. The limitations include lack of external validation and proof of generalizability, difficulty in data access for rare diseases, ethical and legal issues, no precise logic behind the prediction, and last but not the least, lack of education and expertise among medical professionals. A collaboration between departments of clinical oncology, bioinformatics, and data sciences can help overcome these problems in the near future.



Publication History

Article published online:
13 December 2021

© 2021. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Medical and Scientific Publishers Pvt. Ltd.
A-12, 2nd Floor, Sector 2, Noida-201301 UP, India