RSS-Feed abonnieren
DOI: 10.1055/s-0041-1735439
Cancer Vaccine in Solid Tumors: Where We Stand
Abstract
Cancer immunotherapy has achieved landmark progress in the field of medical oncology in the era of personalized medicine. In the recent past, our knowledge has expanded regarding how tumor cells escape from the immune system, introducing immunosuppressive microenvironments, and developing tolerance. Therapeutic cancer vaccine leads to activation of immune memory that is long-lasting, safe, and effective; hence, it is becoming an attractive method of immunotherapy. Various cancer vaccine trials in the past have taught us the types of target selection, magnitude of immune response, and implementation of appropriate technologies for the development of new successful cancer vaccines. Tumor-associated antigens, cancer germline antigens, oncogenic viral antigens, and tumor-specific antigens, also known as neoantigens, are potential targets for designing therapeutic cancer vaccines. Cancer vaccine could be cell based, viral vector based, peptide based, and nucleic acid based (DNA/RNA). Several preclinical and clinical studies have demonstrated the mechanism of action, safety, efficacy, and toxicities of various types of cancer vaccines. In this article, we review the types of various tumor antigens and types of cancer vaccines tested in clinical trials and discuss the application and importance of this approach toward precision medicine in the field of immuno-oncology.
Publikationsverlauf
Artikel online veröffentlicht:
27. November 2021
© 2021. Indian Society of Medical and Paediatric Oncology. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).
Thieme Medical and Scientific Publishers Private Ltd.
A-12, Second Floor, Sector -2, NOIDA -201301, India
-
References
- 1 Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019; 4: 7
- 2 Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer 2014; 14 (02) 135-146
- 3 Ward JP, Gubin MM, Schreiber RD. The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 2016; 130: 25-74
- 4 Grupp SA, Kalos M, Barrett D. et al Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013; 368 (16) 1509-1518
- 5 Maude SL, Frey N, Shaw PA. et al Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371 (16) 1507-1517
- 6 Slamon DJ, Godolphin W, Jones LA. et al Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244 (4905) 707-712
- 7 Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. Mol Ther Oncolytics 2016; 3: 16006
- 8 Xia AL, Wang XC, Lu YJ, Lu XJ, Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: challenges and opportunities. Oncotarget 2017; 8 (52) 90521-90531
- 9 Vigneron N. Human tumor antigens and cancer immunotherapy. BioMed Res Int 2015; 2015: 948501
- 10 Simpson AJ, Caballero OL, Jungbluth A, Chen YT, Old LJ. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005; 5 (08) 615-625
- 11 Morgan RA, Chinnasamy N, Abate-Daga D. et al Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013; 36 (02) 133-151
- 12 Lee CM, Lu SN, Changchien CS. et al Age, gender, and local geographic variations of viral etiology of hepatocellular carcinoma in a hyperendemic area for hepatitis B virus infection. Cancer 1999; 86 (07) 1143-1150
- 13 Chang MH, You SL, Chen CJ. et al Taiwan Hepatoma Study Group. Decreased incidence of hepatocellular carcinoma in hepatitis B vaccinees: a 20-year follow-up study. J Natl Cancer Inst 2009; 101 (19) 1348-1355
- 14 Joura EA, Giuliano AR, Iversen OE. et al Broad Spectrum HPV Vaccine Study. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med 2015; 372 (08) 711-723
- 15 Schumacher T, Bunse L, Pusch S. et al A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014; 512 (7514) 324-327
- 16 Wang QJ, Yu Z, Griffith K, Hanada K, Restifo NP, Yang JC. Identification of T cell receptors targeting KRAS-mutated human tumors. Cancer Immunol Res 2016; 4 (03) 204-214
- 17 Le DT, Pardoll DM, Jaffee EM. Cellular vaccine approaches. Cancer J 2010; 16 (04) 304-310
- 18 Banchereau J, Briere F, Caux C. et al Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767-811
- 19 Kantoff PW, Higano CS, Shore ND. et al IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363 (05) 411-422
- 20 Knutson KL. Technology evaluation: DCVax, Northwest Biotherapeutics. Curr Opin Mol Ther 2002; 4 (04) 403-407
- 21 Northwest Biotherapeutics Pipeline. Available from: http://www.nwio.com/clinical-trials. Accessed July 18, 2021
- 22 Liau LM, Ashkan K, Tran DD. et al First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med 2018; 16 (01) 142
- 23 Hege KM, Jooss K, Pardoll D. GM-CSF gene-modified cancer cell immunotherapies: of mice and men. Int Rev Immunol 2006; 25 (5-6) 321-352
- 24 Small EJ, Sacks N, Nemunaitis J. et al Granulocyte macrophage colony-stimulating factor–secreting allogeneic cellular immunotherapy for hormone-refractory prostate cancer. Clin Cancer Res 2007; 13 (13) 3883-3891
- 25 Lipson EJ, Sharfman WH, Chen S. et al Safety and immunologic correlates of Melanoma GVAX, a GM-CSF secreting allogeneic melanoma cell vaccine administered in the adjuvant setting. J Transl Med 2015; 13: 214
- 26 Laheru D, Lutz E, Burke J. et al Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation. Clin Cancer Res 2008; 14 (05) 1455-1463
- 27 Salgia R, Lynch T, Skarin A. et al Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 2003; 21 (04) 624-630
- 28 Drake CG. Immunotherapy for prostate cancer: walk, don’t run. J Clin Oncol 2009; 27 (25) 4035-4037
- 29 Le DT, Wang-Gillam A, Picozzi V. et al Safety and survival with GVAX pancreas prime and Listeria Monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol 2015; 33 (12) 1325-1333
- 30 Amin A, Dudek AZ, Logan TF. et al Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): Phase 2 study results. J Immunother Cancer 2015; 3: 14
- 31 Figlin RA, Tannir NM, Uzzo RG. et al Results of the ADAPT trial; A randomized Phase III Study of rocapuldencel-T an autologous dendritic cell-based vaccine, in combination with sunitinib as first-line therapy in patients with groups metastatic clear-cell renal cell carcinoma. Clin Cancer Res 2020; 26: 2327-2336
- 32 Di Paola RS, Plante M, Kaufman H, Petrylak DP, Israeli R, Lattime E. et al. A Phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7–1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. J Transl Med 2006; (04) 1 doi: DOI: 10.1186/1479-5876-4-1.
- 33 Kantoff PW, Gulley JL, Pico-Navarro C. Revised overall survival analysis of a Phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol 2017; 35 (01) 124-125
- 34 Bavarian-Nordic Website. Available from: http://www.bavarian-nordic.com/pipeline/PROSTVAC.aspx. Accessed July 18, 2021
- 35 Southall PJ, Boxer GM, Bagshawe KD, Hole N, Bromley M, Stern PL. Immunohistological distribution of 5T4 antigen in normal and malignant tissues. Br J Cancer 1990; 61 (01) 89-95
- 36 Amato RJ, Hawkins RE, Kaufman HL. et al Vaccination of metastatic renal cancer patients with MVA-5T4: a randomized, double-blind, placebo-controlled phase III study. Clin Cancer Res 2010; 16 (22) 5539-5547
- 37 Mittendorf EA, Clifton GT, Holmes JP. et al Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann Oncol 2014; 25 (09) 1735-1742
- 38 Galena Biopharma Discontinues NeuVax™ (nelipepimut-S) Phase 3, PRESENT Interim Analysis Based on Independent Data Monitoring Committee Recommendation. Available from: http://investors.galenabiopharma.com/. Accessed July 18, 2021
- 39 Rosenberg SA, Yang JC, Schwartzentruber DJ. et al Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4 (03) 321-327
- 40 Schwartzentruber DJ, Lawson DH, Richards JM. et al gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med 2011; 364 (22) 2119-2127
- 41 Butts C, Socinski MA, Mitchell PL. et al START trial team. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial. Lancet Oncol 2014; 15 (01) 59-68
- 42 Swartz AM, Li QJ, Sampson JH. Rindopepimut: a promising immunotherapeutic for the treatment of glioblastoma multiforme. Immunotherapy 2014; 6 (06) 679-690
- 43 Celldex Therapeutics. RINTEGA (rindopepimut): A Phase 3 Immunotherapy Targeting EGFRvIII-Expressing Glioblastoma (GBM). Available from: http://www.celldex.com/pipeline/. Accessed July 18, 2021
- 44 Nemunaitis J, Dillman RO, Schwarzenberger PO. et al Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 2006; 24 (29) 4721-4730
- 45 Giaccone G, Bazhenova LA, Nemunaitis J. et al A phase III study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer. Eur J Cancer 2015; 51 (16) 2321-2329
- 46 Zappa C, Mousa SA. Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res 2016; 5 (03) 288-300
- 47 Leitner WW, Ying H, Restifo NP. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 1999; 18 (9-10) 765-777
- 48 Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17 (11) 3520-3526
- 49 Tiriveedhi V, Tucker N, Herndon J. et al Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin Cancer Res 2014; 20 (23) 5964-5975
- 50 Ghanem G, Fabrice J. Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol Oncol 2011; 5 (02) 150-155
- 51 Schmitz-Winnenthal FH, Hohmann N, Niethammer AG. et al Anti-angiogenic activity of VXM01, an oral T-cell vaccine against VEGF receptor 2, in patients with advanced pancreatic cancer: a randomized, placebo-controlled, phase 1 trial. OncoImmunology 2015; 4 (04) e1001217
- 52 Kranz LM, Diken M, Haas H. et al Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534 (7607) 396-401