CC BY 4.0 · Pharmaceutical Fronts 2021; 03(02): e39-e49
DOI: 10.1055/s-0041-1735145
Review Article

Strategies and Applications of Antigen-Binding Fragment (Fab) Production in Escherichia coli

Hui Chen#
1   Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
,
Jun-Sheng Chen#
1   Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
,
Pameila Paerhati
1   Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
,
Tanja Jakos
1   Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
,
Si-Yi Bai
1   Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
,
Jian-Wei Zhu
1   Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
,
Yun-Sheng Yuan
1   Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
› Author Affiliations
Funding This work was supported by the National Natural Science Foundation of China (Grant No. 32070722), the National Science and Technology Major Project (Grant No. 2019ZX09201001-003-008), and Shanghai Jiao Tong University Medicine Engineering Joint Funding (Grant No. YG2019ZDA04 and YG2019QNA50).

Abstract

With the advancement of genetic engineering, monoclonal antibodies (mAbs) have made far-reaching progress in the treatment of various human diseases. However, due to the high cost of production, the increasing demands for antibody-based therapies have not been fully met. Currently, mAb-derived alternatives, such as antigen-binding fragments (Fab), single-chain variable fragments, bispecifics, nanobodies, and conjugated mAbs have emerged as promising new therapeutic modalities. They can be readily prepared in bacterial systems with well-established fermentation technology and ease of manipulation, leading to the reduction of overall cost. This review aims to shed light on the strategies to improve the expression, purification, and yield of Fab fragments in Escherichia coli expression systems, as well as current advances in the applications of Fab fragments.

# These authors contributed equally to this work.




Publication History

Received: 27 May 2021

Accepted: 03 July 2021

Article published online:
02 September 2021

© 2021. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kaplon H, Reichert JM. Antibodies to watch in 2019. MAbs 2019; 11 (02) 219-238
  • 2 Alibakhshi A, Abarghooi Kahaki F, Ahangarzadeh S. et al. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J Control Release 2017; 268: 323-334
  • 3 Walsh G. Biopharmaceutical benchmarks 2018. Nat Biotechnol 2018; 36 (12) 1136-1145
  • 4 Ma H, O'Kennedy R. Recombinant antibody fragment production. Methods 2017; 116: 23-33
  • 5 Rader C. Overview on concepts and applications of Fab antibody fragments. Curr Protoc Protein Sci 2009; Chapter 6: Unit 6.9
  • 6 Bever CS, Dong JX, Vasylieva N. et al. VHH antibodies: emerging reagents for the analysis of environmental chemicals. Anal Bioanal Chem 2016; 408 (22) 5985-6002
  • 7 de Aguiar RB, da Silva TA, Costa BA. et al. Generation and functional characterization of a single-chain variable fragment (scFv) of the anti-FGF2 3F12E7 monoclonal antibody. Sci Rep 2021; 11 (01) 1432
  • 8 Koerber JT, Hornsby MJ, Wells JA. An improved single-chain Fab platform for efficient display and recombinant expression. J Mol Biol 2015; 427 (02) 576-586
  • 9 Kirley TL, Greis KD, Norman AB. Selective disulfide reduction for labeling and enhancement of Fab antibody fragments. Biochem Biophys Res Commun 2016; 480 (04) 752-757
  • 10 An Y, Zhang Y, Mueller HM, Shameem M, Chen X. A new tool for monoclonal antibody analysis: application of IdeS proteolysis in IgG domain-specific characterization. MAbs 2014; 6 (04) 879-893
  • 11 Venturi M, Seifert C, Hunte C. High level production of functional antibody Fab fragments in an oxidizing bacterial cytoplasm. J Mol Biol 2002; 315 (01) 1-8
  • 12 Spadiut O, Capone S, Krainer F, Glieder A, Herwig C. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol 2014; 32 (01) 54-60
  • 13 Lebozec K, Jandrot-Perrus M, Avenard G, Favre-Bulle O, Billiald P. Quality and cost assessment of a recombinant antibody fragment produced from mammalian, yeast and prokaryotic host cells: a case study prior to pharmaceutical development. N Biotechnol 2018; 44: 31-40
  • 14 Backovic M, Johansson DX, Klupp BG, Mettenleiter TC, Persson MA, Rey FA. Efficient method for production of high yields of Fab fragments in Drosophila S2 cells. Protein Eng Des Sel 2010; 23 (04) 169-174
  • 15 Vazquez-Lombardi R, Nevoltris D, Luthra A, Schofield P, Zimmermann C, Christ D. Transient expression of human antibodies in mammalian cells. Nat Protoc 2018; 13 (01) 99-117
  • 16 Gaciarz A, Veijola J, Uchida Y. et al. Systematic screening of soluble expression of antibody fragments in the cytoplasm of E. coli. Microb Cell Fact 2016; 15 (01) 22
  • 17 Kwong KY, Rader C. E. coli expression and purification of fab antibody fragments. Curr Protoc Protein Sci. 2009. Chapter 6. Unit 6.10
  • 18 Stewart EJ, Aslund F, Beckwith J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J 1998; 17 (19) 5543-5550
  • 19 Derman AI, Prinz WA, Belin D, Beckwith J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 1993; 262 (5140): 1744-1747
  • 20 Graumann K, Premstaller A. Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 2006; 1 (02) 164-186
  • 21 Burgess RR. Refolding solubilized inclusion body proteins. Methods Enzymol 2009; 463: 259-282
  • 22 González-Montalban N, García-Fruitós E, Ventura S. et al. Comparative analysis of E. coli inclusion bodies and thermal protein aggregates. Microb Cell Fact 2006; 5 (01) 16
  • 23 Friedrich L, Stangl S, Hahne H. et al. Bacterial production and functional characterization of the Fab fragment of the murine IgG1/lambda monoclonal antibody cmHsp70.1, a reagent for tumour diagnostics. Protein Eng Des Sel 2010; 23 (04) 161-168
  • 24 Rezaie F, Davami F, Mansouri K. et al. Cytosolic expression of functional Fab fragments in Escherichia coli using a novel combination of dual SUMO expression cassette and EnBase® cultivation mode. J Appl Microbiol 2017; 123 (01) 134-144
  • 25 Ojima-Kato T, Fukui K, Yamamoto H. et al. ‘Zipbody’ leucine zipper-fused Fab in E. coli in vitro and in vivo expression systems. Protein Eng Des Sel 2016; 29 (04) 149-157
  • 26 Singh SM, Panda AK. Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 2005; 99 (04) 303-310
  • 27 Vallejo LF, Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact 2004; 3 (01) 11
  • 28 Rinas U, Hoffmann F, Betiku E, Estapé D, Marten S. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. J Biotechnol 2007; 127 (02) 244-257
  • 29 Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 2015; 14 (01) 41
  • 30 Misawa S, Kumagai I. Refolding of therapeutic proteins produced in Escherichia coli as inclusion bodies. Biopolymers 1999; 51 (04) 297-307
  • 31 Arora D, Khanna N. Method for increasing the yield of properly folded recombinant human gamma interferon from inclusion bodies. J Biotechnol 1996; 52 (02) 127-133
  • 32 Buchner J, Rudolph R. Renaturation, purification and characterization of recombinant Fab-fragments produced in Escherichia coli. Biotechnology (N Y) 1991; 9 (02) 157-162
  • 33 Luo M, Zhao M, Cagliero C. et al. A general platform for efficient extracellular expression and purification of Fab from Escherichia coli. Appl Microbiol Biotechnol 2019; 103 (08) 3341-3353
  • 34 Ellis M, Patel P, Edon M, Ramage W, Dickinson R, Humphreys DP. Development of a high yielding E. coli periplasmic expression system for the production of humanized Fab' fragments. Biotechnol Prog 2017; 33 (01) 212-220
  • 35 Gupta SK, Shukla P. Microbial platform technology for recombinant antibody fragment production: a review. Crit Rev Microbiol 2017; 43 (01) 31-42
  • 36 Corisdeo S, Wang B. Functional expression and display of an antibody Fab fragment in Escherichia coli: study of vector designs and culture conditions. Protein Expr Purif 2004; 34 (02) 270-279
  • 37 Lin B, Renshaw MW, Autote K. et al. A step-wise approach significantly enhances protein yield of a rationally-designed agonist antibody fragment in E. coli. Protein Expr Purif 2008; 59 (01) 55-63
  • 38 Gupta SK, Shukla P. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications. Crit Rev Biotechnol 2016; 36 (06) 1089-1098
  • 39 Thie H, Schirrmann T, Paschke M, Dübel S, Hust M. SRP and Sec pathway leader peptides for antibody phage display and antibody fragment production in E. coli. N Biotechnol 2008; 25 (01) 49-54
  • 40 Nagano R, Masuda K. Establishment of a signal peptide with cross-species compatibility for functional antibody expression in both Escherichia coli and Chinese hamster ovary cells. Biochem Biophys Res Commun 2014; 447 (04) 655-659
  • 41 Burioni R, Plaisant P, Bugli F, Delli Carri V, Clementi M, Fadda G. A vector for the expression of recombinant monoclonal Fab fragments in bacteria. J Immunol Methods 1998; 217 (1–2): 195-199
  • 42 Levy R, Weiss R, Chen G, Iverson BL, Georgiou G. Production of correctly folded Fab antibody fragment in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr Purif 2001; 23 (02) 338-347
  • 43 Kumar S, Kalsi J, Ravirajan CT. et al. Molecular cloning and expression of the Fabs of human autoantibodies in Escherichia coli. Determination of the heavy or light chain contribution to the anti-DNA/-cardiolipin activity of the Fab. J Biol Chem 2000; 275 (45) 35129-35136
  • 44 Elena C, Ravasi P, Castelli ME, Peirú S, Menzella HG. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Front Microbiol 2014; 5: 21
  • 45 Nissley DA, Sharma AK, Ahmed N. et al. Accurate prediction of cellular co-translational folding indicates proteins can switch from post- to co-translational folding. Nat Commun 2016; 7: 10341
  • 46 Goodman DB, Church GM, Kosuri S. Causes and effects of N-terminal codon bias in bacterial genes. Science 2013; 342 (6157): 475-479
  • 47 Zalucki YM, Jennings MP. Experimental confirmation of a key role for non-optimal codons in protein export. Biochem Biophys Res Commun 2007; 355 (01) 143-148
  • 48 Pechmann S, Chartron JW, Frydman J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo. Nat Struct Mol Biol 2014; 21 (12) 1100-1105
  • 49 Kulmala A, Huovinen T, Lamminmäki U. Improvement of Fab expression by screening combinatorial synonymous signal sequence libraries. Microb Cell Fact 2019; 18 (01) 157
  • 50 Khow O, Suntrarachun S. Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed 2012; 2 (02) 159-162
  • 51 Chung KT, Lee TH, Kang GS. Isolation of proteins that speifically interact with the ATPase domain of mammalian ER chaperone, BiP. Biotechnol Bioprocess Eng 2003; 8 (03) 192-198
  • 52 Ow DS, Lim DY, Nissom PM, Camattari A, Wong VV. Co-expression of Skp and FkpA chaperones improves cell viability and alters the global expression of stress response genes during scFvD1.3 production. Microb Cell Fact 2010; 9: 22
  • 53 Webb HM, Ruddock LW, Marchant RJ, Jonas K, Klappa P. Interaction of the periplasmic peptidylprolyl cis-trans isomerase SurA with model peptides. The N-terminal region of SurA id essential and sufficient for peptide binding. J Biol Chem 2001; 276 (49) 45622-45627
  • 54 Rodriguez-Carmona E, Cano-Garrido O, Dragosits M. et al. Recombinant Fab expression and secretion in Escherichia coli continuous culture at medium cell densities: Influence of temperature. Process Biochem 2012; 47 (03) 446-452
  • 55 Yang Q, Xu J, Li M, Lei X, An L. High-level expression of a soluble snake venom enzyme, gloshedobin, in E. coli in the presence of metal ions. Biotechnol Lett 2003; 25 (08) 607-610
  • 56 Kim SJ, Ha GS, Lee G. et al. Enhanced expression of soluble antibody fragments by low-temperature and overdosing with a nitrogen source. Enzyme Microb Technol 2018; 115: 9-15
  • 57 An F, Chen YC, Fan LY, Han HX. Fed-batch fermentation of Escherichia coli that express fab fragment of anti-HBsAg [in Chinese]. Sheng Wu Gong Cheng Xue Bao 2003; 19 (01) 87-91
  • 58 O'Brien PM, Maxwell G, Campo MS. Bacterial expression and purification of recombinant bovine Fab fragments. Protein Expr Purif 2002; 24 (01) 43-50
  • 59 Bäcklund E, Reeks D, Markland K, Weir N, Bowering L, Larsson G. Fedbatch design for periplasmic product retention in Escherichia coli. J Biotechnol 2008; 135 (04) 358-365
  • 60 Ukkonen K, Veijola J, Vasala A, Neubauer P. Effect of culture medium, host strain and oxygen transfer on recombinant Fab antibody fragment yield and leakage to medium in shaken E. coli cultures. Microb Cell Fact 2013; 12: 73
  • 61 Schofield DM, Templar A, Newton J, Nesbeth DN. Promoter engineering to optimize recombinant periplasmic Fab' fragment production in Escherichia coli. Biotechnol Prog 2016; 32 (04) 840-847
  • 62 Chodorge M, Züger S, Stirnimann C. et al. A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency. Cell Death Differ 2012; 19 (07) 1187-1195
  • 63 Holzer W, Petersen F, Strittmatter W, Matzku S, von Hoegen I. A fusion protein of IL-8 and a Fab antibody fragments binds to IL-8 receptors and induces neutrophil activation. Cytokine 1996; 8 (03) 214-221
  • 64 Nelke J, Medler J, Weisenberger D, Beilhack A, Wajant H. CD40- and CD95-specific antibody single chain-Baff fusion proteins display BaffR-, TACI- and BCMA-restricted agonism. MAbs 2020; 12 (01) 1807721
  • 65 Bauss F, Lechmann M, Krippendorff B-F. et al. Characterization of a re-engineered, mesothelin-targeted Pseudomonas exotoxin fusion protein for lung cancer therapy. Mol Oncol 2016; 10 (08) 1317-1329
  • 66 Nascimento A, Mullerpatan A, Azevedo AM, Karande P, Cramer S. Development of phage biopanning strategies to identify affinity peptide ligands for kappa light chain Fab fragments. Biotechnol Prog 2019; 35 (06) e2884
  • 67 Zhao Y, Gutshall L, Jiang H. et al. Two routes for production and purification of Fab fragments in biopharmaceutical discovery research: Papain digestion of mAb and transient expression in mammalian cells. Protein Expr Purif 2009; 67 (02) 182-189
  • 68 Malpiedi LP, Díaz CA, Nerli BB. et al. Single-chain antibody fragments: purification methodologies. Process Biochem 2013; 48 (08) 1242-1251
  • 69 McMahon MJ, O'Kennedy R. Polyreactivity as an acquired artefact, rather than a physiologic property, of antibodies: evidence that monoreactive antibodies may gain the ability to bind to multiple antigens after exposure to low pH. J Immunol Methods 2000; 241 (1–2): 1-10
  • 70 Alves NJ, Stimple SD, Handlogten MW, Ashley JD, Kiziltepe T, Bilgicer B. Small-molecule-based affinity chromatography method for antibody purification via nucleotide binding site targeting. Anal Chem 2012; 84 (18) 7721-7728
  • 71 Spooner J, Keen J, Nayyar K. et al. Evaluation of strategies to control Fab light chain dimer during mammalian expression and purification: a universal one-step process for purification of correctly assembled Fab. Biotechnol Bioeng 2015; 112 (07) 1472-1477
  • 72 Jalalirad R. Efficient chromatographic processes for elevated purification of antibody fragment (Fab D1.3) from crude escherichia coli culture. Biotechnology 2013; 12 (02) 74-80
  • 73 Rouby G, Tran NT, Leblanc Y, Taverna M, Bihoreau N. Investigation of monoclonal antibody dimers in a final formulated drug by separation techniques coupled to native mass spectrometry. MAbs 2020; 12 (01) e1781743
  • 74 Nasiri H, Valedkarimi Z, Aghebati-Maleki L. et al. Production and purification of polyclonal antibody against F(ab')2 fragment of human immunoglobulin G. Vet Res Forum 2017; 8 (04) 307-312
  • 75 Smith AG, Kaiser PK. Therapeutic monoclonal antibodies and fragments: Ranibizumab. Dev Ophthalmol 2016; 55: 246-251
  • 76 Nakamura H, Oda-Ueda N, Ueda T, Ohkuri T. A novel engineered interchain disulfide bond in the constant region enhances the thermostability of adalimumab Fab. Biochem Biophys Res Commun 2018; 495 (01) 7-11
  • 77 Campanati A, Benfaremo D, Luchetti MM, Ganzetti G, Gabrielli A, Offidani A. Certolizumab pegol for the treatment of psoriasis. Expert Opin Biol Ther 2017; 17 (03) 387-394
  • 78 Ruiz Garcia V, Burls A, Cabello JB, Vela Casasempere P, Bort-Marti S, Bernal JA. Certolizumab pegol (CDP870) for rheumatoid arthritis in adults. Cochrane Database Syst Rev 2017; 9 (09) CD007649
  • 79 Goel N, Stephens S. Certolizumab pegol. MAbs 2010; 2 (02) 137-147
  • 80 Kanje S, von Witting E, Chiang SC, Bryceson YT, Hober S. Site-specific photolabeling of the IgG Fab fragment using a small protein G derived domain. Bioconjug Chem 2016; 27 (09) 2095-2102
  • 81 Zhou Z, Zhang J, Zhang Y, Ma G, Su Z. Specific conjugation of the hinge region for homogeneous preparation of antibody fragment-drug conjugate: a case study for doxorubicin-PEG-anti-CD20 Fab' synthesis. Bioconjug Chem 2016; 27 (01) 238-246
  • 82 Kornberger P, Skerra A. Sortase-catalyzed in vitro functionalization of a HER2-specific recombinant Fab for tumor targeting of the plant cytotoxin gelonin. MAbs 2014; 6 (02) 354-366
  • 83 Huang R, Sheng Y, Wei D, Yu J, Chen H, Jiang B. Bis(vinylsulfonyl)piperazines as efficient linkers for highly homogeneous antibody-drug conjugates. Eur J Med Chem 2020; 190: 112080
  • 84 Wissler HL, Ehlerding EB, Lyu Z. et al. Site-specific immuno-PET tracer to image PD-L1. Mol Pharm 2019; 16 (05) 2028-2036
  • 85 Khalili H, Godwin A, Choi JW, Lever R, Khaw PT, Brocchini S. Fab-PEG-Fab as a potential antibody mimetic. Bioconjug Chem 2013; 24 (11) 1870-1882
  • 86 Mori A, Ojima-Kato T, Kojima T, Nakano H. Zipbodyzyme: development of new antibody-enzyme fusion proteins. J Biosci Bioeng 2018; 125 (06) 637-643
  • 87 Ritthisan P, Ojima-Kato T, Damnjanović J, Kojima T, Nakano H. SKIK-zipbody-alkaline phosphatase, a novel antibody fusion protein expressed in Escherichia coli cytoplasm. J Biosci Bioeng 2018; 126 (06) 705-709
  • 88 Kang HJ, Kim HJ, Jung MS, Han JK, Cha SH. Optimal expression of a Fab-effector fusion protein in Escherichia coli by removing the cysteine residues responsible for an interchain disulfide bond of a Fab molecule. Immunol Lett 2017; 184: 34-42
  • 89 Du J, Cao Y, Liu Y. et al. Engineering bifunctional antibodies with constant region fusion architectures. J Am Chem Soc 2017; 139 (51) 18607-18615
  • 90 Rodriguez C, Nam DH, Kruchowy E, Ge X. Efficient antibody assembly in E. coli periplasm by disulfide bond folding factor co-expression and culture optimization. Appl Biochem Biotechnol 2017; 183 (02) 520-529
  • 91 Fink M, Vazulka S, Egger E. et al. Microbioreactor cultivations of Fab-producing Escherichia coli reveal genome-integrated systems as suitable for prospective studies on direct Fab expression effects. Biotechnol J 2019; 14 (11) e1800637
  • 92 Dariushnejad H, Farajnia S, Zarghami N. et al. Effect of DnaK/DnaJ/GrpE and DsbC chaperons on periplasmic expression of Fab antibody by E. coli SEC pathway. Int J Pept Res 2019; 25 (01) 67-74
  • 93 Rodríguez-Martínez LM, Marquez-Ipiña AR, López-Pacheco F. et al. Antibody derived peptides for detection of Ebola virus glycoprotein. PLoS One 2015; 10 (10) e0135859